Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:27:10.927Z Has data issue: false hasContentIssue false

Syntheses of Metal Chalcogenides Using Organometallic Methods

Published online by Cambridge University Press:  25 February 2011

Michael L. Steigerwald*
Affiliation:
AT&T Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey, 07974
Get access

Abstract

The precursor method is being used increasingly in the preparation of solid state inorganic materials. Use of this general method allows the isolation of otherwise inaccessible phases and the preparation of known phases under much milder conditions. One approach which holds promise is the use of organometallic precursors for the preparation of both thin films and bulk samples of inorganic materials. In this paper I describe our syntheses of several metal chalcogenides from organometallic reagents.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See, for example, (a) Schafer, H., Angew. Chem. (Int. Ed. Engl.), 1971, 10, 4350. (b) Wold, A., J. Chem. Educ., 1980, 57, 531–6.CrossRefGoogle Scholar
[2] (a) West, A. R., “Solid State Chemistry and Its Applications:, Wiley and Sons, 1984, N.Y. p. 1631. (b) Rao, C. N. R., Gopalakrishnan, J. “New Directions in Solid State Chemistry:, Cambridge University Press, 1986, Cambridge, UK, p. 116–24. (c) Foise, J., Kim, K., Covino, J., Dwight, K., Wold, A., Chianelli, R., Passaretti, J. Inorg. Chem. 1984, 23, 872–4. (e) Jensen, J. A., Gozum, J. E. Pollina, D. M., Girolami, G. S., J. Amer. Chem. Soc., 1988, 110, 1643–4. (f) Nanjundswamy, K. S., Vasanthacharaya, N. Y., Golapakrishnan, J., Rao, C. N. R., Inorg. Chem., 1987, 26, 4286–8.Google Scholar
[3] Tunnicliffe, J., Irvine, S. J. C., Dosser, O. D., Mullin, J. B., J. Cryst. Growth, 1984, 68, 245.Google Scholar
[4] Kisker, D. W., Steigerwald, M. L., Kometani, T. Y., Jeffers, K. S., Appl. Physi. Lett. 1987, 50, 1681–3.Google Scholar
[5] Steigerwald, M. L.; Sprinkle, C. R., J. Amer. Chem. Soc. 1987, 109, 7200.CrossRefGoogle Scholar
[6] (a) Okamoto, Y.; Yano, T. J. J. Organomet. Chem. 1971, 29, 99103. (b) Dance, N. S.; Jones, C. H. W. J. Organomet. Chem. 1978, 152, 175–85.CrossRefGoogle Scholar
[7] Zingaro, R. A.; Stevens, B. H.; Irgolic, K. J. Organomet. Chem. 1965, 4, 320–3.Google Scholar
[8] Steigerwald, M. L.; Sprinkle, C. R., Organometallics, 1988, 7, 245.Google Scholar
[9] Steigerwald, M. L.; Rice, C. E., J. Amer. Chem. Soc. 1988, 110, 4228–31.Google Scholar
[10] Gronvold, F.; Haraldsen, H.; Vihode, J. Acta Chem. Scand. 1954, 8, 1927–42. The designation of the 13 phase of Fe/Te as FeTe is a misnomer. The stability range of this phase (as prepared from the direct combination of the elements) is reported to be from FeTeO.8 to FeTeO.9. In the work described in this manuscript the phase we report as FeTe shows the X-ray diffraction pattern of this 13 phase.CrossRefGoogle Scholar
[11] Steigerwald, M. L. Chem. Mat., 1989, 1, in press.CrossRefGoogle Scholar