Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-23T20:44:30.286Z Has data issue: false hasContentIssue false

Synroc for Immobilising Excess Weapons Plutonium

Published online by Cambridge University Press:  15 February 2011

A. Jostsons
Affiliation:
Advanced Materials Program, ANSTO, Private Mail Bag 1, Menai, N.S.W., 2234, Australia
E. R. Vance
Affiliation:
Advanced Materials Program, ANSTO, Private Mail Bag 1, Menai, N.S.W., 2234, Australia
D. J. Mercer
Affiliation:
Advanced Materials Program, ANSTO, Private Mail Bag 1, Menai, N.S.W., 2234, Australia
V. M. Oversby
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94450, U.S.A.
Get access

Abstract

The immobilisation of excess weapons plutonium into Synroc can meet all of the important criteria discussed by the U.S. National Academy of Sciences (NAS)(1) for disposal, if the disposal option is pursued rather than options that exploit the energy value of plutonium. This paper summarises the relevant background of Pu incorporation into Synroc, the durability of Pu-containing Synroc and outlines a process flowsheet based on the experience with the 10 kg/hr Synroc Demonstration Plant at ANSTO. The extensive solid solubility of Pu in Synroc, coupled with a very high degree of chemical durability under hydrothermal conditions, makes Synroc ideal as a waste matrix for Pu disposal in deep boreholes to minimise diversion and proliferation risks.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. National Academy of Sciences, Management and Dispositions of Excess Weapons Plutonium (National Academy Press, Washington DC, 1994).Google Scholar
2. Jostsons, A., in Proc. 9th Pacific Basin Nuclear Conf., Edited by McDonald, N.R. (Institution of Engineers, Australia, 1994) p. 865.Google Scholar
3. Vance, E.R., Begg, B.D., Day, R.A. and Ball, C.J., this volume.Google Scholar
4. Hough, A. and Marples, J.A.C., AEA Technology Report, AEA-FS-0201 (H), (1993).Google Scholar
5. Kesson, S.E., Sinclair, W.J. and Ringwood, A.E., Nucl. Chem. Waste Manage., 3, 259 (1983).Google Scholar
6. Clinard, F.W. Jr., Hobbs, L.W., Land, C.C., Peterson, D.E., Rohr, D.L. and Roof, R.B., J. Nucl. Mater., 105, 248 (1982).Google Scholar
7. Clinard, F.W. Jr., Rohr, D.L. and Roof, R.B., Nucl. Instrum. Methods, Bl, 581 (1984).Google Scholar
8. Ringwood, A.E., Kesson, S.E., Reeve, K.D., Levins, D.M. and Ramm, E.J. in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R.C. (North-Holland Publishers, Amsterdam, 1988) pp. 233334.Google Scholar
9. Blackford, M.G., Smith, K.L. and Hart, K.P., in Scientific Basis for Nuclear Waste Management XV. edited by Sombret, C.G. (Mat. Res. Soc. Proc. 257, Pittsburgh, PA, 1992) pp. 243249.Google Scholar
10. Vance, E.R., Angel, P.J., Begg, B.D. and Day, R.A., in Scientific Basis for Nuclear Waste Management XVII edited by Barkatt, A. and Van Konyneburg, R.A. (Mat. Res. Soc. Proc. 333, Pittsburgh, PA, 1994) pp. 293298.Google Scholar
11. Levins, D.M., Hart, K.P., McGlinn, P.J., Lam, P., Seatonberry, B.W., Robinson, B.J., Smith, K.L. and Leung, S., ANSTO Report, ANSTO C/223 (1991).Google Scholar
12. Hart, K.P., Glassley, W.E. and McGlinn, P.J., Radiochimica Acta., 58/ 59, 33 (1992).Google Scholar
13. Ewing, R.C., Weber, W.J. and Clinard, F.W., to be published in Progress in Nuclear Energy (1994).Google Scholar
14. Clinard, F.W. Jr., Peterson, D.E., Rohr, D.L. and Hobbs, L.W., J. Nucl. Mater., 126, 245 (1984).Google Scholar
15. Clinard, F.W. Jr., Ceramic Bull., 65, 1181 (1986).Google Scholar
16. Weber, W.J., Wald, J.W. and Matzke, Hj., J. Nucl. Mater., 138, 196 (1986).Google Scholar
17. Clinard, F.W. Jr., Foltyn, E.M. and Ewing, R.C., J. Nucl. Mater., 185, 202 (1991).Google Scholar
18. Boult, K.A., Dalton, J.T., Evans, J.P., Hall, A.R., Inns, A.J., Marples, J.A.C. and Paige, E.L., UKAE Report, AERE R 13318 (1988).Google Scholar
19. Mitamura, H., Matsumoto, S., Stewart, M.W.A., Tsuboi, T., Hashimoto, M., Vance, E.R., Hart, K.P., Togashi, Y., Kanazawa, H., Ball, C.J. and White, T.J., J. Am. Ceram. Soc., 77, 2255 (1994).Google Scholar
20. Muraoka, S., Mitamura, H., Matsumoto, S., Vance, E.R. and Hart, K.P., in Proc. 9th Pacific Basin Nuclear Conf., Edited by McDonald, N.R. (Inst, of Engineers, Australia, 1994) p. 873.Google Scholar
21. Mitamura, H., Matsumoto, S., Hart, K.P., Miyazaki, T., Vance, E.R., Tamura, Y., Togashi, Y. and White, T.J., J. Am. Ceram. Soc., 75, 392 (1992).Google Scholar
22. Oversby, V.M. and Ringwood, A.E., Rad. Waste Manage., 1, 289 (1981).Google Scholar
23. Lumpkin, G.R., Hart, K.P., McGlinn, P.J., Payne, T.E., Giere, R. and Williams, C.T., Radiochimica Acta, in press (1994).Google Scholar
24. Sizgek, E., Bartlett, J.R., Woolfrey, J.L. and Vance, E.R., in Scientific Basis for Nuclear Waste Management XVII, edited by Barkatt, A. and Van Konynenburg, R.A., (Mat. Res. Soc. Proc. 333, Pittsburg, PA, 1994) pp. 305312.Google Scholar