Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T14:14:30.577Z Has data issue: false hasContentIssue false

Synergistic Physical Properties of Multiphase Nanocomposites with Carbon Nanotubes and Inorganic Particles

Published online by Cambridge University Press:  01 February 2011

Jan Sumfleth
Affiliation:
[email protected], Technische Universität Hamburg-Harburg, Institute of Polymers and Composites, Denickestrasse 15, Hamburg, 21075, Germany, +4940428782621, +4940428782002
Montira Sriyai
Affiliation:
[email protected], Technische Universität Hamburg-Harburg, Institute of Polymers and Composites, Denickestrasse 15, Hamburg, 21073, Germany
Luis Prado
Affiliation:
[email protected], Technische Universität Hamburg-Harburg, Institute of Polymers and Composites, Denickestrasse 15, Hamburg, 21073, Germany
Malte H.G. Wichmann
Affiliation:
[email protected], Technische Universität Hamburg-Harburg, Institute of Polymers and Composites, Denickestrasse 15, Hamburg, 21073, Germany
Karl Schulte
Affiliation:
[email protected], Technische Universität Hamburg-Harburg, Institute of Polymers and Composites, Denickestrasse 15, Hamburg, 21073, Germany
Get access

Abstract

Multiphase epoxy-nanocomposites based on multi-wall carbon nanotubes (MWCNT) and inorganic nanoparticles (TiO2) were produced. The rheological, electrical and thermo-mechanical properties were investigated in order to reveal informations about the interparticle interactions between the different types of nanoparticles. TEM-investigations reveal altered microstructures for the multiphase nanocomposites (MWCNT plus TiO2). TiO2 causes changes in the state of dispersion of MWCNT which can lead to an increase of the rheological parameters (e.g. G'). Due to changes in the formation of the percolated MWCNT network during curing, the electrical conductivity is decreased if the concentration of the non-conductive fillers exceeds a critical value. Additional synergistic effects could be found for the glass transition temperature. The presence of nanoparticles leads to a chemical inactivation of reactive groups of the matrix. Thus, the generated interphase between matrix and nanoparticles exhibits a lower curing degree which results in lower thermo-mechanical properties. For the multiphase systems the glass transition temperature is decreased less, due to an inactivation of the surface of the different types of nanoparticles by a self assembly which leads to a higher curing degree of the interphase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gojny, F. H., Wichmann., M. H. G., Fiedler, B., Kinloch, I., Windle, A. H., Bauhofer, W., Schulte, K., Polymer 47, 20362045 (2006).Google Scholar
2. Gojny, F. H., Wichmann., M. H. G., Fiedler, B., Schulte, K., Compos. Scie. Technol. 65, 23002313 (2005).Google Scholar
3. Wichmann, M. H. G., Cascione, M., Fiedler, B., Quaresimin, M., Schulte, K., Compos. Interfaces 13, 699715 (2006).Google Scholar
4. Li, Q., Zaiser, M., Koutsos, V., Phys. Stat. Sol. (a) 201, 8991 (2004).Google Scholar
5. Liao, Y. H., Marietta-Tondin, O., Liang, Z., Zhang, C., Wang, B., Mat. Sci. Eng. A 385, 175181 (2004).Google Scholar
6. Liu, L., Grunlan, J. C., Adv. Funct. Mater. 17, 23432348 (2007).Google Scholar
7. Kotaki, M., Wang, K., Toh, M. L., Chen, L., Wong, S. Y., He, C., Macromolecules 39, 908911 (2006).Google Scholar
8. Fiedler, B., Gojny, F. H., Wichmann., M. H. G., Nolte., M. C. M., Schulte, K., Compos. Scie. Technol. 66, 31153125 (2006).Google Scholar
9. Evora., V. M. F., Shukla, A., Mater. Sci. Eng., A 361, 358366 (2003).Google Scholar
10.Yang, Y., Wang, P., Polymer 47, 26832688 (2006).Google Scholar
11.Sumfleth, J., Sriyai, M., Prado, L., Wichmann., M. H. G., Schulte, K., Adv. Funct. Mater., to be submitted.Google Scholar
12.Sandler., J. K. W., Kirk, J. E., Kinloch, I. A., Schaffer., M. S. P., Windle, A. H., Polymer 44, 58935899 (2003).Google Scholar