Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:36:06.672Z Has data issue: false hasContentIssue false

Synergistic effects on band gap-narrowing in titania by doping from first-principles calculations: density functional theory studies

Published online by Cambridge University Press:  11 July 2011

Run Long
Affiliation:
The SEC Strategic Research Cluster and the Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
Niall J. English
Affiliation:
The SEC Strategic Research Cluster and the Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
Get access

Abstract

The large intrinsic band gap in TiO2 has hindered severely its potential application for visible-light irradiation. We have used a passivated approach to modify the band edges of anatase-TiO2 by codoping of X (N, C) with transition metals (TM=W, Re, Os) to extend the absorption edge to longer visible-light wavelengths. It was found that all the codoped systems can narrow the band gap significantly; in particular, (N+W)-codoped systems could serve as remarkably better photocatalysts with both narrowing of the band gap and relatively smaller formation energies and larger binding energies than those of (C+TM) and (N+TM)-codoped systems. Our theoretical calculations help to rationalise experimental results and provide reasonably meaningful guides for experiment to develop more powerful visible-light photocatalysts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoffmann, M.R., Martin, S.T., Choi, W.W. and Bahnemann, D.W., Chem. Rev. 95, 69 (1995).Google Scholar
2. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., Science 293, 269 (2001).Google Scholar
3. Irie, H., Watanabe, Y. and Hashimoto, K., J. Phys. Chem. B 107, 5483 (2003).Google Scholar
4. Lin, Z., Orlov, A., Lambert, R.M. and Payne, M.C., J. Phys. Chem. B 109, 20948 (2005).Google Scholar
5. Chen, X.B. and Burda, C.J., J. Am. Chem. Soc. 130, 5018 (2008).Google Scholar
6. Mu, W., Herrmann, J.M. and Pichat, P., P. Catal. Lett. 3, 73 (1989).Google Scholar
7. Gai, Y.Q., Li, J.B., Li, A.S., Xia, J.B. and Wei, S.H., Phys. Rev. Lett. 102, 036402 (2009).Google Scholar
8. Ahn, K.S., Yan, Y., Shet, S., Deutsch, T., Turner, J. and Al-Jassim, M., Appl. Phys. Lett. 91, 231909 (2007).Google Scholar
9. Gao, B.F., Ma, Y., Cao, Y.A., Yang, W.S. and Yao, J.N., J.Phys. Chem. B 2006, 110, 14391 (2006).Google Scholar
10. Shen, Y.F., Xiong, T.Y., Li, T.F. and Yang, K., Appl. Catal., B 83, 177 (2008).Google Scholar
11. Long, R. and English, N.J., Appl. Phys. Lett. 94, 132102 (2009).Google Scholar
12. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1994).Google Scholar
13. Kresse, G. and Furtherműller, J., J. Phys. Rev. B 54, 11169 (1996).Google Scholar
14. Perdew, J.P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 38653868 (1996).Google Scholar
15. Perdew, J.P. and Wang, Y., Phys. Rev. B, 45, 13244 (1992).Google Scholar
16. Monkhorst, H.J., Pack, H. J., J. D. Phys. Rev. B 1976, 13, 51885192.Google Scholar
17. Davidson, E.R., Methods in Computational Molecular Physics edited by Diercksen, G.H.F Google Scholar
18. Wilson, S., Vol. 113 NATO Advanced Study Institute, Series C (Plenum, New York, 1983), p. 95.Google Scholar
19. Dudarev, S.L., Botton, G.A., Savarsov, S.Y., Humphreys, C.J. and Sutton, A.P., Phys. Rev. B 57, 1505 (1998).Google Scholar
20. Calzado, C.J., Hernández, A. and Sanz, J.F., Phys. Rev. B 77, 045118 (2008).Google Scholar
21. Anisimov, V.I., Korotin, M.A., Nekrasov, I.A., Mylnikov, A.S., Lukoyanov, A.V., Wang, J.L. and Zeng, Z., J. Phys.: Condens. Matter 18, 1695 (2006).Google Scholar
22. Du, X.S., Li, Q.X., Su, H.B. and Yang, J.L., Phys. Rev. B 74, 233201 (2006).Google Scholar
23. Wilson, N.C., Grey, I.E. and Russo, S.P., J. Phys. Chem. C. 111, 10915 (2007).Google Scholar
24. Di Valentin, C., Pacchioni, G., Selloni, A., Chem. Mater. 2005, 17, 66566665.Google Scholar
25. Finazzi, E. and Di Valentin, C., J. Phys. Chem. C 111, 9275 (2007).Google Scholar
26. Reuter, K. and Scheffler, M., Phys. Rev. B 65, 035406 (2001).Google Scholar
27. CRC Handbook of Chemistry and Physics 87th ed.; Lide, D. R. Taylor & Francis: London, 2006.Google Scholar
28. Di Valelntin, C., Pacchioni, G., Selloni, A., Livraghi, S. and Giamello, E.J., Phys. Chem. C 119, 11414 (2005).Google Scholar
29. Chi, B., Zhao, L., Jin, T., J. Phys. Chem. C 111, 6189 (2007).Google Scholar
30. Batzill, M., Morales, E.H. and Diebold, U., Phys. Rev. Lett. 96, 026103 (2006).Google Scholar
31. Yang, K.S., Dai, Y., Huang, B.B. and Han, S., J. Phys. Chem. B. 110, 24011 (2006).Google Scholar
32. Becke, A.D. and Edgecombe, K.E., J. Chem. Phys. 92 5397 (1990).Google Scholar
33. Li, J., Wei, S.H., Li, S.S and Xia, J.B., Phys. Rev. B 74, 081201 (2006).Google Scholar
34. Henkelman, G., Arnaldsson, A. and Jónsson, H., Comput. Mater. Sci. 36, 354 (2006).Google Scholar
35. Sanville, E., Kenny, S.D., Smith, R. and Henkelman, G., J. Comp. Chem. 28, 899 (2007).Google Scholar
36. Long, R. and English, N.J., Chem. Phys. Lett. 48, 175 (2009).Google Scholar