Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T05:04:18.278Z Has data issue: false hasContentIssue false

Synchrotron X-Ray Study of the Structure of Silicon During Pulsed Laser Processing*

Published online by Cambridge University Press:  15 February 2011

B. C. Larson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
T. S. Noggle
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
J. F. Barhorst
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
D. Mills
Affiliation:
Cornell High Energy Sychrotron Source and School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850
Get access

Abstract

Synchrotron x-ray pulses have been used to make nanosecond resolution time-resolved x-ray diffraction measurements on silicon during pulsed laser annealing. Thermal expansion analysis of near-surface strains during annealing has provided depth dependent temperature profiles indicating >1100°C temperatures and diffraction from boron implanted silicon has shown evidence for near-surface melting. These results are in qualitative agreement with the thermal melting model of laser annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract W-7405-eng-26 with Union Carbide Corporation.

References

REFERENCES

1. Wood, R. F. and Giles, G. E., Phys. Rev. B 23, 2923 (1981).Google Scholar
2. Vechten, J. A. Van and Wautelet, M., Phys. Rev. B 23, 5543 (1981).CrossRefGoogle Scholar
3. Bok, J., Phys. Lett. 84A, 448 (1981).CrossRefGoogle Scholar
4. Combescot, M., Phys. Lett. 85A, 308 (1981).Google Scholar
5. Brown, Walter L., p. 1 in Laser and Electron-Beam Solid Interactions and Materials Processing, ed. by Gibbons, J. F., Hess, L. D. and Sigmon, T. M., North Holland, New York, 1981.Google Scholar
6. Narayan, J., Young, R. T. and White, C. W., J. Appl. Phys. 49, 3912 (1978).Google Scholar
7. Lo, H. W. and Compaan, A., Phys. Rev. Lett. 44, 1604 (1980).Google Scholar
8. White, C. W., Pronko, P. P., Wilson, S. R., Appleton, B. R., Narayan, J. and Young, R. T., J. Appl. Phys. 50, 3261 (1979).Google Scholar
9. Auston, D. A., Golovchenko, J. A., Simons, A. L., Surko, C. M. and Venkatesan, T.N.C., Appl. Phys. Lett. 34, 777 (1979).Google Scholar
10. Stritzker, B., Pospieszczyk, A. and Tagle, J. A., Phys. Rev. Lett. 47, 356 (1981).CrossRefGoogle Scholar
11. Bloembergen, N. et al. , these proceedings.Google Scholar
12. Larson, B. C., White, C. W. and Appleton, B. R., Appl. Phys. Lett. 32, 801 (1978).CrossRefGoogle Scholar
13. Klar, B. and Rustichelli, F., Nuovo Cimento 13B, 249 (1973).Google Scholar
14. Larson, B. C. and Barhorst, J. F., J. Appl. Phys. 51, 3181 (1980).Google Scholar
15. Fukuhara, A. and Takano, Y., Acta Christallogr. A33, 1371 (1977).Google Scholar
16. Ibach, H., Phys. Stat. Sol. 31, 625 (1969).Google Scholar
17. Touloukian, Y. S., Kirby, R. K., Taylor, R. E. and Lee, T.Y.R. (Eds.), p. 154 in Thermophysical Properties of Matter Vol. 13, IFI/Plenum Press, New York, 1977.Google Scholar
18. Lowndes, D. et al. , these proceedings.Google Scholar
19. Wood, R. F., private communications.Google Scholar
20. Gauster, W. B., Phys. Rev. 187, 1035 (1969).Google Scholar
21. Gauster, W. B. and Habing, D. H., Phys. Rev. Lett. 18, 1058 (1967).Google Scholar