Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T08:23:45.684Z Has data issue: false hasContentIssue false

Synchrotron Radiation Hard X-Ray Microprobe by Multilayer Fresnel Zone Plate

Published online by Cambridge University Press:  10 February 2011

S. Tamura
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka, Japan.
K. Ohtani
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka, Japan.
M. Yasumoto
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka, Japan.
K. Murali
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka, Japan.
N. Kamuo
Affiliation:
Kansai Medical University, Hirakata, Osaka, Japan.
H. Kihara
Affiliation:
Kansai Medical University, Hirakata, Osaka, Japan.
K. Yoshida
Affiliation:
Osaka Institute of Technology, Ohmiya, Asahi-ku, Osaka, Japan.
Y. Suzuki
Affiliation:
Japan Synchrotron Radiation Research Institute, Kamigori, Ako-gun, Hyogo, Japan.
Get access

Abstract

A hard X-ray microbeam with submicrometer spot size from synchrotron radiation (SR) sources is expected to add a new dimension to various X-ray analysis methods. A Fresnel zone plate (FZP) is one of the promising focusing elements for X-rays. In order to develop high performance multilayer FZP for use in the hard X-ray region, Cu/Al concentric multilayers were fabricated by use of a DC sputtering deposition process. Lower Ar gas pressure or higher rotating speed of a wire substrate has been effective in forming smoother multilayer interfaces. From a focusing test of the Cu/Al FZP (100-zones) by the SR (λ= 0.154nm), microbeams of 1.5 μm φ and 0.8 μm φ have been achieved for the first- and third-order focal beams, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Snigirev, A., Snigireva, I., Engstom, P., Lequien, S., Suvorov, A., Hartman, Ya., Suvorov, P., Chevallier, P., Idir, M., Legrand, F., Soullie, G. and Engrand, S., Rev. Sci. Instrum., 66, 1461 (1995).Google Scholar
2. Lai, B., Yun, W.B., Legnini, D., Xiao, Y., Crzas, J., Viccaro, P.J., White, V., Bajikar, S., Denton, D., Cerrina, F., Fabrizio, E.Di., Gentili, M., Grella, L. and Baciocchi, M., Appl. Phys. Lett., 61, 1877(1992).Google Scholar
3. Mills, D. M., , J. Synchrotron Radiation, 4, 117(1997).Google Scholar
4. Kamijo, N., Tamura, S., Suzuki, Y., Handa, K., Takeuchi, A., Yamamoto, S., Ando, M., Ohsumi, K. and Kihara, H., Rev. Sci. Instrum., 68, 14 (1997).Google Scholar
5. Suzuki, Y., Kamijo, N., Tamura, S., Handa, K., Takeuchi, A., Yamamoto, S., Sugiyama, H., Ohsumi, K. and Ando, M., J. Synchrotron Radiation, 4, 60 (1997).Google Scholar
6. Tamura, S., Mori, K., Maruhashi, T., Yoshida, K., Ohtani, K., Kamijo, N., Suzuki, Y. and Kihara, H. in Thin Films — Structure and Morphology, edited by Moss, S. C., Ila, D., Cammarata, R.C., Chason, E. H., Einstein, T. L. and Williams, E. D. (Mater. Res. Soc. Proc. 441, Boston, MA, 1996) pp. 779784.Google Scholar
7. Tamura, S., Ohtani, K., Kamijo, N., Suzuki, T. and Kihara, H., Thin Solid Films, 281/282, 243 (1996).Google Scholar
8. A.Thornton, J., J. Vac. Sci. Technol., A 4, 3059 (1986).Google Scholar
9. L.Windt, D., Brown, W.L., Volkert, C.A. and Waskiewicz, W.K., J. Appl. Phys., 78, 2423 (1995).Google Scholar
10. Kamijo, N., Tamura, S., Suzuki, Y. and Kihara, H., Rev. Sci. Instrum., 66, 2132 (1995).Google Scholar