Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T09:12:12.337Z Has data issue: false hasContentIssue false

Synchrotron Diffraction Study of the Isothermal Oxidation of Uranium Dioxide at 250°C

Published online by Cambridge University Press:  01 February 2011

Gurvan Rousseau
Affiliation:
SPMS, UMR 8580 CNRS-Ecole Centrale Paris, Grande voie des vignes, 92295 Châtenay-Malabry, FR. [email protected] CEA Cadarache, DEC/S3C/LECMI Bât. 316, 13108 St. Paul-lez-Durance, FR. LRRS, UMR 5613, CNRS-Université de Bourgogne, 9 Av. Alain Savary BP 47870, 21078 Dijon, FR.
Lionel Desgranges
Affiliation:
CEA Cadarache, DEC/S3C/LECMI Bât. 316, 13108 St. Paul-lez-Durance, FR.
Jean-Claude Nièpce
Affiliation:
LRRS, UMR 5613, CNRS-Université de Bourgogne, 9 Av. Alain Savary BP 47870, 21078 Dijon, FR.
Jean-François Bérar
Affiliation:
D2AM CRG, CNRS, ESRF - Polygone Scientifique Louis Néel, 6 rue Jules Horowitz, 38000 Grenoble, FR.
Gianguido Baldinozzi
Affiliation:
SPMS, UMR 8580 CNRS-Ecole Centrale Paris, Grande voie des vignes, 92295 Châtenay-Malabry, FR. [email protected]
Get access

Abstract

The structural evolution of UO2 during its oxidation to U3O8 at 250°C in air was studied by in-situ synchrotron X-ray diffraction on the D2AM-CRG beamline at ESRF. The aim of this study is to determine the phases that are likely to appear during the long-term storage of spent nuclear fuel. Our results are in disagreement with the literature in which the existence of an intermediate cubic phase is not reported. Instead, an α-U3O7 tetragonal phase (c/a < 1) was mentioned but not definitively observed. These previous interpretations may have been the result of poor instrumental resolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aronson, S., Roof, R.B. Jr and Belle, J., J. Chem. Phys. 27 (1957) 137.Google Scholar
[2] Blackburn, P.E., Weissbart, J. and Gulbransen, E.A., J. Phys. Chem. 62 (1958) 902.Google Scholar
[3] Hoekstra, H.R., Santoro, A. and Siegel, S., J. Inorg. Nucl. Chem. 18 (1961) 166.Google Scholar
[4] McEachern, R.J. and Taylor, P., J. Nucl. Mater. 254 (1998) 87.Google Scholar
[5] Thomas, L.E., Einziger, R.E. and Buchanan, H.C., J. Nucl. Mater. 201 (1993) 310.Google Scholar
[6] Allen, G.C. and Holmes, N.R., J. Nucl. Mater. 223 (1995) 231.Google Scholar
[7] Poinssot, C. et al. CEA-R-5958(E) II (2001) 363.Google Scholar
[8] Willis, B.T.M., Le Journal de Physique 25, (1964) 431.Google Scholar
[9] Belbeoch, B., Boibineau, J.C. and Perio, P., J. Phys. Chem. Solids 28 (1967) 1267.Google Scholar
[10] Westrum, E.F. and Gronvold, F., J. Phys. Chem. Solids 23 (1962) 39.Google Scholar
[11] Loopstra, B.O., J. Appl. Cryst. 3 (1970) 94.Google Scholar
[12] Bevan, D.J.M., Grey, I.E. and Willis, B.T.M., J. Solid State Chem. 61 (1986) 1.Google Scholar
[13] Lozano, N., Ph.D. Thesis, Dijon, 1998.Google Scholar