Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:39:31.890Z Has data issue: false hasContentIssue false

Switchable Bragg Gratings Formed in Situ Within a Polymer-Dispersed Liquid Crystal Composite Medium

Published online by Cambridge University Press:  10 February 2011

R. L. Sutherland
Affiliation:
Science Applications International Corporation, 101 Woodman Drive, Dayton, OH 45431, [email protected]
L. V. Natarajan
Affiliation:
Science Applications International Corporation, 101 Woodman Drive, Dayton, OH 45431, [email protected]
T. J. Bunning
Affiliation:
Science Applications International Corporation, 101 Woodman Drive, Dayton, OH 45431, [email protected]
V. P. Tondiglia
Affiliation:
Science Applications International Corporation, 101 Woodman Drive, Dayton, OH 45431, [email protected]
W. W. Adams
Affiliation:
Wright Laboratory, Materials Directorate, Wright-Patterson Air Force Base, OH 45433-7702
Get access

Abstract

Holographic photo-curing of a penta-acrylate monomer-liquid crystal mixture forms a unique system of liquid crystal microdomains confined to Bragg planes. We examine the physics of this structure as it relates to the formation of electrically switchable holograms, for which many potential applications exist. The results of scanning electron microscopy and laser characterization studies lead to the development of concepts and models for explaining the microscopic morphology and electro-optical properties of these holograms. We find that a model incorporating a shaped-droplet analysis of the electro-mechanical properties of LC domains combined with standard coupled-wave theory of holography offers good numerical agreement with diffraction efficiency data for ppolarized probe light.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Doane, J. W., Vaz, N. A., Wu, B. -G., and Zumer, S., Appl. Phys. Lett. 48, p. 269 (1986).Google Scholar
2. Drzaic, P. S., Liquid Crystal Dispersions, World Scientific, Singapore, 1995, pp. 7592.Google Scholar
3. Sutherland, R. L., Natarajan, L. V., Tondiglia, V. P., and Bunning, T. J., Chem. Mater. 5, p. 1,533 (1993).Google Scholar
4. Sutherland, R. L., Tondiglia, V. P., Natarajan, L. V., Bunning, T. J., and Adams, W. W., Appl. Phys. Lett. 64, p. 1,074 (1994).Google Scholar
5. Bunning, T. J., Natarajan, L. V., Tondiglia, V., Sutherland, R. L., Vezie, D. L., and Adams, W. W., Polymer 36, p. 2,699 (1995).Google Scholar
6. Tondiglia, V. P., Natarajan, L. V., Sutherland, R. L., Bunning, T. J., and Adams, W. W., Opt. Lett. 20, p. 1,325 (1995).Google Scholar
7. Wang, X. Y., Yu, Y. K., and Taylor, P. L., J. Appl. Phys., in press.Google Scholar
8. Golemme, A., Zumer, S., Allender, D. W., and Doane, J. W., Phys. Rev. Lett. 61, p. 2,973 (1988).Google Scholar
9. Bunning, T. J., Natarajan, L. V., Tondiglia, V. P., Sutherland, R. L., and Adams, W. W., in Liquid Crystal Materials. Devices, and Applications IV, edited by Shashidhar, R. (Proc. SPIE 2651, Bellingham, WA, 1996), in press.Google Scholar
10. Sutherland, R. L., Natarajan, L. V., Tondiglia, V. P., Bunning, T. J., and Adams, W. W., in Diffractive and Holographic Optics Technology III, edited by Cindrich, I. and Lee, S. H. (Proc. SPIE 2689, Bellingham, WA, 1996), in press.Google Scholar
11. Wu, B. -G., Erdmann, J. H., and Doane, J. W., Liq. Cryst. 5, p. 1,453 (1989).Google Scholar
12. Kogelnik, H., Bell Syst. Tech. J. 48, p. 2,909 (1969).Google Scholar
13. Corson, D. and Lorrain, P., Introduction to Electromagnetic Fields and Waves, W. H. Freeman and Co., San Francisco, 1962, pp. 105107.Google Scholar
14. Zumer, S. and Doane, J. W., Phys. Rev. A 34, p. 3,373 (1986).Google Scholar
15. lannacchione, G. S., Finotello, D., Natarajan, L. V., Sutherland, R. L., Tondiglia, V. P., Bunning, T. J., and Adams, W. W., submitted for publication.Google Scholar
16. Domash, L., Gozewski, C., Nelson, A., and Schwartz, J., in Very Large Optical Memories II, edited by Kowel, S. (Proc. SPIE 2026, Bellingham, WA, 1993), pp. 642652.Google Scholar
17. Domash, L. H., Chen, Y. -M., Gomatam, B., Gozewski, C., Sutherland, R. L., Natarajan, L. V., Tondiglia, V. P., Bunning, T. J., and Adams, W. W., in Diffractive and Holographic Optics Technology III, edited by Cindrich, I. and Lee, S. H. (Proc. SPIE 2689, Bellingham, WA, 1996), in press.Google Scholar