No CrossRef data available.
Article contents
Surveying for Migration Pathways in the Granitic Rock Using Nuclear Track Detectors, Autoradiography and Digital Image Analysis as an Aid To Construct the Basis for Heterogeneous Diffusion Modeling
Published online by Cambridge University Press: 21 March 2011
Abstract
Radioelement migration within a rock matrix under natural long-term conditions is a complex process controlled by various parameters. Pure physical parameters such as porosity, hydraulic conductivity and diffusivity are usually sufficient to describe transport in well-defined laboratory systems. In natural rock matrices transport is influenced by physical pore properties such as pore size distribution, connectivity, tortuosity, constrictivity and petrological and chemical nature and charge on the fluid-rock interface. The overall characterization of heterogeneous rock structures is needed for the accurate heterogeneous diffusion modeling.
Here we describe a method for the detection of μ-particles from uranium in cm-scale rock samples based on the analysis of the tracks formed in organic polymer, CR-39. On the other hand the uranium tracks were compared with the migration pathways and porosity distribution produced with the 14C-polymethylmethacrylate impregnation method (14C-PMMA). For analyzing mineral specific uranium occurrence and porosities the staining methods were used to produce the mineral map of the rock sample. Digital image analysis techniques were applied to the different cm-scale pictures of rock samples. Scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS) were performed in order both to study the pore apertures of grain boundaries and fissures in greater detail and to detect the uranium phases.
The high uranium content was found to be congruent with the porous mineral phases; altered plagioclase and biotite grains, and the intra- and intergranular fissures detected with the 14C-PMMA technique. Plenty of microfractures transsecting potassium feldspar and quartz grains were filled with calcite together with precipitated uranium.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001