Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:53:24.706Z Has data issue: false hasContentIssue false

Surfactant-SWNT Assembly and Static Dielectrics of SWNTs

Published online by Cambridge University Press:  01 February 2011

Dan Wang
Affiliation:
[email protected], Ohio University, Chemistry & Biochemistry, Athens, OH, 45701, United States
Wei Lu
Affiliation:
[email protected], Ohio University, Chemistry & Biochemistry, Athens, OH, 45701, United States
Ru Zhang
Affiliation:
[email protected], Ohio University, Physics & Astronomy, Athens, OH, 45701, United States
Zi-Chen Li
Affiliation:
[email protected], Peking University, Beijing, N/A, China, People's Republic of
Liwei Chen
Affiliation:
[email protected], Ohio University, Dept. of Chemistry & Biochemistry, 136 Clippinger Labs, Athens, OH, 45701, United States, 740-593-2308
Get access

Abstract

In this invited presentation, we report (1) the assembly of polymer surfactants at the single-walled carbon nanotube (SWNT) and water interface, which not only results in the dispersion of SWNTs in aqueous environments but also provides opportunities for controlled assembly of ternary complexes and the introduction of external stimuli-responsive SWNT dispersions; (2) the first experimental measurement of dc polarization of individual carbon nanotubes using modified scanning force microscopy techniques. The transverse dielectric constant of carbon nanotube is about 10, and this method could be used to distinguish metallic from semiconducting nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1 O'Connell, M. J., Bachilo, S. M., Huffman, C. B. et al. , Science 297, 593 (2002).Google Scholar
2 Richard, C., Balavoine, F., Schultz, P. et al. , Science 300, 775 (2003).Google Scholar
3 Numata, M., Asai, M., Kaneko, K. et al. , J. Am. Chem. Soc. 127, 5875 (2005).Google Scholar
4 Dieckmann, G. R., Dalton, A. B., Johnson, P. A. et al. , J. Am. Chem. Soc. 125, 1770 (2003).Google Scholar
5 Karajanagi, S. S., Yang, H., Asuri, P. et al. , Langmuir ASAP (2006).Google Scholar
6 Zheng, M., Jagota, A., Semke, E. D. et al. , Nature Materials 2, 338 (2003).Google Scholar
7 Zheng, M., Jagota, A., Strano, M. S. et al. , Science 302, 1545 (2003).Google Scholar
8 Chatterjee, T., Yurekli, K., Hadjiev, V. G. et al. , Advanced Functional Materials 15, 1832 (2005).Google Scholar
9 Sinani, V. A., Gheith, M. K., Yaroslavov, A. A. et al. , Journal of the American Chemical Society 127, 3463 (2005).Google Scholar
10 Li, Y., Rotkin, S. V., and Ravaioli, U., Nano Letters 3, 183 (2003).Google Scholar
11 Lin, M. F. and Chuu, D. S., Physical Review B 56, 4996 (1997).Google Scholar
12 Benedict, L. X., Louie, S. G., and Cohen, M. L., Physical Review B 52, 8541 (1995).Google Scholar
13 Jensen, L., Schmidt, O. H., Mikkelsen, K. V. et al. , Journal of Physical Chemistry B 104, 10462 (2000).Google Scholar
14 Leonard, F. and Tersoff, J., Applied Physics Letters 81, 4835 (2002).Google Scholar
15 Kozinsky, B. and Marzari, N., Physical Review Letters 96 (2006).Google Scholar
16 Novikov, D. S. and Levitov, L. S., Physical Review Letters 96, 036402 (2006).Google Scholar
17 Brothers, E. N., Kudin, K. N., Scuseria, G. E. et al. , Physical Review B 72, 033402 (2005).Google Scholar
18 Wang, D., Ji, W. X., Li, Z. C. et al. , J. Am. Chem. Soc. 128, 6556 (2006).Google Scholar
19 Cheung, C. L., Kurtz, A., Park, H. et al. , Journal of Physical Chemistry B 106, 2429 (2002).Google Scholar
20 Cherniavskaya, O., Chen, L. W., Weng, V. et al. , Journal of Physical Chemistry B 107, 1525 (2003).Google Scholar
21 Wang, D., Li, Z.-C., and Chen, L., J. Am. Chem. Soc. 128, 15078 (2006).Google Scholar
22 Chen, S. and Kimura, K., Langmuir 15, 1075 (1999).Google Scholar
23 Zheng, M. and Rostovtsev, V. V., J. Am. Chem. Soc. 128, 7702 (2006).Google Scholar
24 Yao, H., Kojima, H., Sato, S. et al. , Langmuir 20, 10317 (2004).Google Scholar
25 Moore, V. C., Strano, M. S., Haroz, E. H. et al. , Nano Letters 3, 1379 (2003).Google Scholar
26 Dresselhaus, M. S., Dresselhaus, G., Jorio, A. et al. , Carbon 40, 2043 (2002).Google Scholar
27 Schild, H. G., Progress in Polymer Science 17, 163 (1992).Google Scholar
28 Sun, T., Wang, G., Feng, L. et al. , Angewandte Chemie, International Edition 43, 357 (2004).Google Scholar
29 Lin, S. Y., Chen, K. S., and Liang, R. C., Polymer 40, 2619 (1999).Google Scholar
30 Dougherty, D. A., Science 271, 163 (1996).Google Scholar
31 Scrutton, N. S. and Raine, A. R. C., Biochemical Journal 319, 1 (1996).Google Scholar
32 Wang, Y. and Chang, Y. C., Macromolecules 36, 6511 (2003).Google Scholar
33 Davidson, B. and Fasman, G. D., Biochemistry 6, 1616 (1967).Google Scholar
34 Greenfield, N. J. and Fasman, G. D., Biochemistry 8, 4108 (1969).Google Scholar