Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T16:32:39.475Z Has data issue: false hasContentIssue false

Surfactant-Mediated Growth of Aigaas by Molecular Beam Epitaxy

Published online by Cambridge University Press:  15 February 2011

Ron Kaspi
Affiliation:
Wright State University, University Research Center, Dayton, OH 45435
Keith R. Evans
Affiliation:
Wright Laboratory, Solid State Electronics Directorate (WL/ELDM), Wright-Patterson AFB, OH 45433-7323
Don C. Reynolds
Affiliation:
Wright State University, University Research Center, Dayton, OH 45435
Jeff Brown
Affiliation:
Wright Laboratory, Solid State Electronics Directorate (WL/ELDM), Wright-Patterson AFB, OH 45433-7323
Marek Skowronski
Affiliation:
Carnegie Mellon University, Department of Materials Science and Engineering, Pittsburgh, PA 15213
Get access

Abstract

Antimony was used as a surfactant during solid-source molecular beam epitaxy of AIGaAs layers. A steady-state surface-segregated population of Sb was maintained at the AIGaAs growth surface by providing a continuous Sb2 flux to compensate for loss due to thermal desorption. Above ∼ 650 °C, the incorporation rate of Sb was negligible, thereby allowing the deposition of AlGaAs layers despite the presence of Sb at the surface. A significant improvement in the optical quality of Al0.24Ga0 76As layers was observed by photoluminescence. In addition, extended reflection high energy electron diffraction oscillations and a reduction in Al0.24Ga0.76As surface roughness was observed when Sb was employed as a surfactant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tournié, E. and Ploog, K.H., Thin Solid Films 231, 43 (1993).Google Scholar
2. Osten, H.J., Klatt, J., Lippert, G., and Bugiel, E., J. Cryst. Growth 127, 396 (1993).Google Scholar
3. Copel, M. and Tromp, R.M., Appl. Phys. Lett. 58, 2648 (1991).Google Scholar
4. Copel, M., Reuter, M.C., and Tromp, R.M., Phys. Rev. Lett. 62, 632 (1989).Google Scholar
5. Higuchi, S. and Nakanishi, Y., Surface Sci. 254, L465 (1991).Google Scholar
6. Wolter, H., Schmidt, M. and Wandelt, K., Surface Sci. 298, 173 (1993).Google Scholar
7. Massies, J., Grandjean, N. and Etgens, V.H., Appl. Phys. Lett. 61, 99 (1992).Google Scholar
8. Grandjean, N., Massies, J. and Etgens, V.H., Phys. Rev. Lett. 69, 796 (1992).Google Scholar
9. Sakamoto, K., Kiki, M., Sakamoto, T., Matsuhata, H., J. Cryst. Growth 127, 392 (1993).Google Scholar
10. Weisbuch, C., Dingle, R., Gossard, A.C. and Wiegmann, W., J. Vac. Sci. Technol. 17, 1128 (1980).Google Scholar
11. Pavesi, L. and Guzzi, M., J. Appl. Phys. 75, 4779 (1994).Google Scholar
12. Alexandre, F., Goldstein, L., Leroux, G., Joncour, M.C., Thibierge, H. and Rao, E.V.K., J. Vac. Sci. Technol. B3, 950 (1985).Google Scholar
13. Chand, N., Chu, S.N.G., and Geva, M., Appl. Phys. Lett. 59, 2874 (1991).Google Scholar
14. Klein, J., Fisher, R., Drummond, T.J., Morkog, H. and Cho, A.Y., Electron. Lett. 19, 453 (1983)Google Scholar
15. Evans, K.R., Stutz, C.E., Yu, P.W., Wie, C.R., J. Vac. Sci. Technol. B8, 271 (1990).Google Scholar
16. Fatt, Y.S., J. Appl. Phys. 73, 3261 (1993).Google Scholar
17. Hove, J.M. Van and Cohen, P.I., Appl. Phys. Lett. 47, 726 (1985).Google Scholar
18. Yakimova, R., Paskova, T. and Ivanov, I., J. Crystal Growth 129, 143 (1993).Google Scholar