Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:40:33.864Z Has data issue: false hasContentIssue false

Surfactant-free Colloidal Crystal of ZnO Quantum Dots

Published online by Cambridge University Press:  31 January 2011

Xi Zhang
Affiliation:
[email protected], Texas A&M University, Materials Science and Engineering, College Station, Texas, United States
Dazhi Sun
Affiliation:
[email protected], Texas A&M University, Materials Science and Engineering, College Station, Texas, United States
Hung-Jue Sue
Affiliation:
[email protected], Texas A&M University, Mechanical Engineering, College Station, Texas, United States
Get access

Abstract

Monodisperse ZnO quantum dots (QDs) with a particle size of about 5 nm have been synthesized. Isopropanol together with hexane were utilized to precipitate ZnO nanoparticles to form condensed phases, ranging from white flocculation, to gel-like fluid, and to transparent solid. The morphology and structure in the transparent ZnO solid was characterized by UV-vis, X-ray diffraction, small-angle X-ray scattering, transmission electron microscopy, and scanning electron microscopy. The mechanisms for the formation of transparent ZnO QDs close-packed structure were monitored via UV-vis spectra, and found likely to be a colloidal crystal. The colloidal crystal is transparent and absorbs UV light efficiently. Possible conditions for the formation of the ZnO QDs colloidal crystal are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Naidoo, K.J. and Schnitker, J., J. Chem. Phys., 100(4), 3114 (1994).Google Scholar
2 Denkov, N.D., Velev, O.D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, H. and Nagayama, K., Nature, 361(6407), 26 (1993).Google Scholar
3 Korgel, B.A., Fullam, S., Connolly, S. and Fitzmaurice, D., J. Phys. Chem. B, 102(43), 8379 (1998).Google Scholar
4 Bishop, K.J.M. and Grzybowski, B.A., Proc. Natl Acad. Sci., 104(25), 10305 (2007).Google Scholar
5 Vossmeyer, T., Jia, S., DeIonno, E., Diehl, M.R., Kim, S.-H., Peng, X., Alivisatos, A.P., and Heath, J.R., J. Appl. Phys., 84(7), 3664 (1998).Google Scholar
6 Murray, C.B., Kagan, C.R. and Bawendi, M.G., Science, 270(5240), 1335 (1995); J. Phys. Chem. B, 30(1), 545 (2000).Google Scholar
7 Sun, D., Wong, M., Sun, L., Li, Y., Miyatake, N. and Sue, H.-J., J. Sol-Gel Sci. Tech., 43(2), 237 (2007).Google Scholar
8 Meulenkamp, E.A., J. Phys. Chem. B, 102(29), 5566 (1998).Google Scholar
9 Sun, D., Sue, H.-J. and Miyatake, N., J. Phys. Chem. C, 112(41), 16002 (2008).Google Scholar
10 Pusey, P.N. and Megen, van W., Nature, 320(6060), 340 (1986).Google Scholar
11 Russel, W. B., Saville, D. A. and Schowalter, W. R., Colloidal Dispersions, (Cambridge University Press, 1989) p. 259.Google Scholar
12 Brus, L., J. Phys. Chem., 90(12), 2555 (1986).Google Scholar
13 Artemyev, M. V., Woggon, U., Jaschinski, H., Gurinovich, L. I. and Gaponenko, S. V., J. Phys. Chem. B, 104(49), 11617 (2000).Google Scholar
14 Cozzoli, P. D., Curri, M. L. and Agostiano, A., J. Phys. Chem. B, 107(20), 4756 (2003).Google Scholar