Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:20:44.280Z Has data issue: false hasContentIssue false

Surfaces and Interfaces of Nanoscale Silicon Materials

Published online by Cambridge University Press:  13 May 2013

Sean R. Wagner
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-2320, U.S.A.
Pengpeng Zhang
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-2320, U.S.A.
Get access

Abstract

Surfaces and interfaces play a critical role in determining properties and functions of nanomaterials, in many cases dominating bulk properties, owing to the large surface- and interface-area-to-volume ratio. Using Si nanomembranes, a well-controlled two-dimensional single-crystalline semiconductor, as a prototype system, we discuss how surfaces and interfaces influence electrical transport properties at the nanoscale. We show that electronic conduction in Si nanomembranes is not determined by bulk dopants but by the interplay of surface and interface electronic structures with the “bulk” band structure of the thin Si membrane. Additionally, we describe our recent experimental results on the control of highly ordered molecular structures on Si surfaces, which is of intense interest for the integration of ordered organic thin films in silicon-based electronics. This could also potentially lead to the rational design of Si nanostructures with controlled properties through regulation of the surface chemistry.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H., Adv. Mater. 15, 353 (2003).10.1002/adma.200390087CrossRefGoogle Scholar
Léonard, F. and Talin, A. A., Nat. Nanotechnol. 6, 773 (2011).10.1038/nnano.2011.196CrossRefGoogle Scholar
Stangl, J., Holý, V., Bauer, G., Rev. Mod. Phys. 76, 725 (2004).10.1103/RevModPhys.76.725CrossRefGoogle Scholar
Li, H. Y., Wunnicke, O., Borgström, M. T., Immink, W. G. G., van Weert, M. H. M., Verheijen, M. A., and Bakkers, E. P. A. M., Nano Lett. 7, 1144 (2007).10.1021/nl0627487CrossRefGoogle Scholar
Björk, M. T., Schmid, H., Knoch, J., Riel, H., and Riess, W., Nat. Nanotechnol. 4, 103 (2009).10.1038/nnano.2008.400CrossRefGoogle Scholar
Ho, J. C., Yerushalmi, R., Jacobson, Z. A., Fan, Z., Alley, R. L., and Javey, A., Nat. Mater. 7, 62 (2008).10.1038/nmat2058CrossRefGoogle Scholar
Li, M., Xing, G., Qune, L. F. N. A., Xing, G., Wu, T., Huan, C. H. A., Zhang, X., and Sum, T. C., Phys. Chem. Chem. Phys. 14, 3075 (2012).10.1039/c2cp23425dCrossRefGoogle Scholar
Schricker, A. D., Davidson, F. M. III, Wiacek, R. J., and Korgel, B. A., Nanotechnology 17, 2681 (2006).10.1088/0957-4484/17/10/040CrossRefGoogle Scholar
Jie, J., Zhang, W., Peng, K., Yuan, G., Lee, C. S., and Lee, S.-T., Adv. Funct. Mater. 18, 3251 (2008).10.1002/adfm.200800399CrossRefGoogle Scholar
Jena, D. and Konar, A., Phys. Rev. Lett. 98, 136805 (2007).10.1103/PhysRevLett.98.136805CrossRefGoogle Scholar
Tang, J., Kemp, K. W., Hoogland, S., Jeong, K. S., Liu, H., Levina, L., Furukawa, M., Wang, X., Debnath, R., Cha, D., Chou, K. W., Fischer, A., Amassian, A., Asbury, J. B., and Sargent, E. H., Nat. Mater. 10, 765 (2011).10.1038/nmat3118CrossRefGoogle Scholar
Wolkin, M. V., Jorne, J., and Fauchet, P. M., Phys. Rev. Lett. 82, 197 (1999).10.1103/PhysRevLett.82.197CrossRefGoogle Scholar
Soreni-Harari, M., Yaacobi-Gross, N., Steiner, D., Aharoni, A., Banin, U., Millo, O., and Tessler, N., Nano Lett. 8, 678 (2008).10.1021/nl0732171CrossRefGoogle Scholar
Kim, D.-H., Ghaffari, R., Lu, N., and Rogers, J. A., Annu. Rev. Biomed.Eng. 14, 113 (2012).10.1146/annurev-bioeng-071811-150018CrossRefGoogle Scholar
Ying, M., Bonifas, A. P., Lu, N., Su, Y., Li, R., Cheng, H., Ameen, A., Huang, Y., and Rogers, J. A., Nanotechnology 23, 344004 (2012).10.1088/0957-4484/23/34/344004CrossRefGoogle Scholar
, C. Bufon, C. B., Espinoza, J. D. A., Thurmer, D. J., Bauer, M., Deneke, C., Zschieschang, U., Klauk, H., and Schmidt, O. G., Nano Lett. 11, 3727 (2011).10.1021/nl201773dCrossRefGoogle Scholar
Yoon, J., Baca, A. J., Park, S.-I., Elvikis, P., Geddes, J. B. III, Li, L, Kim, R. H., Xiao, J., Wang, S., Kim, T.-H., Motala, M. J., Ahn, B. Y., Duoss, E. B., Lewis, J. A., Nuzzo, R. G., Ferreira, P. M., Huang, Y., Rockett, A., and Rogers, J. A., Nat. Mater. 7, 907 (2008).10.1038/nmat2287CrossRefGoogle Scholar
Yang, Y., Hwang, Y., Cho, H. A., Song, J.-H., Park, S.-J., Rogers, J. A., and Ko, H. C., Small 7, 484 (2011).10.1002/smll.201001633CrossRefGoogle Scholar
Cavallo, F. and Lagally, M. G., Soft Matter 6, 439 (2010).10.1039/B916582GCrossRefGoogle Scholar
Yan, C., Xi, W., Si, W., Deng, J., and Schmidt, O. G., Adv. Mater. 25, 539 (2013).10.1002/adma.201203458CrossRefGoogle Scholar
Zhang, P. P., Tevaarwerk, E., Park, B.-N., Savage, D. E., Celler, G. K., Knezevic, I., Evans, P. G., Eriksson, M. A., and Lagally, M. G., Nature 439, 703 (2006).10.1038/nature04501CrossRefGoogle Scholar
Strobel, P., Riedel, M., Ristein, J., and Ley, L., Nature 430, 439 (2004).10.1038/nature02751CrossRefGoogle Scholar
Schroder, D. K., in Semiconductor Material and Device Characterization, (Wiley, New York, 1998).Google Scholar
Zhang, P. P., Nordberg, E. P., Park, B.-N., Celler, G. K., Knezevic, I., Evans, P. G., Eriksson, M. A., and Lagally, M. G., New J. Phys. 8, 200 (2006).10.1088/1367-2630/8/9/200CrossRefGoogle Scholar
Peng, W., Aksamija, Z., Scott, S. A., Endres, J. J., Savage, D. E., Knezevic, I., Eriksson, M. A., and Lagally, M. G., Nat. Commun. 4, 1339 (2013).10.1038/ncomms2350CrossRefGoogle Scholar
Ashkenasy, G., Cahen, D., Cohen, R., Shanzer, A., and Vilan, A., Acc. Chem. Res. 35, 121 (2002).10.1021/ar990047tCrossRefGoogle Scholar
Barth, J. V., Annu. Rev. Phys. Chem. 58, 375 (2007).10.1146/annurev.physchem.56.092503.141259CrossRefGoogle Scholar
Duhm, S., Heimel, G., Salzmann, I., Glowatzki, H., Johnson, R. L., Vollmer, A. J., Rabe, J. P., and Koch, N., Nat. Mater. 7, 326 (2008).10.1038/nmat2119CrossRefGoogle Scholar
Lyo, I.-W., Kaxiras, E., and Avouris, Ph., Phys. Rev. Lett. 63, 1261 (1989).10.1103/PhysRevLett.63.1261CrossRefGoogle Scholar
Wagner, S. R., Lunt, R. R., and Zhang, P. P., Phys. Rev. Lett. 110, 086107 (2013).10.1103/PhysRevLett.110.086107CrossRefGoogle Scholar
Martínez-Díaz, M. V., de la Torre, G., and Tomás, , Chem. Commun. 46, 7090 (2010).10.1039/c0cc02213fCrossRefGoogle Scholar
Hooks, D. E., Fritz, T., and Ward, M. D., Adv. Mater. 13, 227(2001).10.1002/1521-4095(200102)13:4<227::AID-ADMA227>3.0.CO;2-P3.0.CO;2-P>CrossRef3.0.CO;2-P>Google Scholar
Hwang, J., Wan, A., and Kahn, A., Mater. Sci. Eng. R 64, 1 (2009).10.1016/j.mser.2008.12.001CrossRefGoogle Scholar
Wakayama, Y., J. Phys. Chem. C 111, 2675 (2008).10.1021/jp0664061CrossRefGoogle Scholar
Kowarik, S., Gerlach, A., Sellner, S., Schreiber, F., Cavalcanti, L., and Konovalov, O., Phys. Rev. Lett. 96, 125504 (2006).10.1103/PhysRevLett.96.125504CrossRefGoogle Scholar
Götzen, J., Käfer, D., Wöll, C., and Witte, G., Phys. Rev. B 81, 085440 (2010).10.1103/PhysRevB.81.085440CrossRefGoogle Scholar
Fritz, S. E., Martin, S. M., Frisbie, C. D., Ward, M. D., and Toney, M. F., J. Am. Chem. Soc. 126, 4084 (2004).10.1021/ja049726bCrossRefGoogle Scholar
Chwang, A. B. and Frisbie, C. D., J. Appl. Phys. 90, 1342 (2001).10.1063/1.1376404CrossRefGoogle Scholar
Goose, J. E., First, E. L., and Clancy, P., Phys. Rev. B 81, 205310 (2010).10.1103/PhysRevB.81.205310CrossRefGoogle Scholar
Xie, M. H., Seutter, S. M., Zhu, W. K., Zheng, L. X., Wu, H., and Tong, S. Y., Phys. Rev. Lett. 82, 2749 (1999).10.1103/PhysRevLett.82.2749CrossRefGoogle Scholar
Kol’tsov, E., Basova, T., Semyannikov, P., Mater. Chem. Phys. 86, 222 (2004).10.1016/j.matchemphys.2004.03.007CrossRefGoogle Scholar
Byrappa, K., Ohachi, T., Michaeli, W., Warlimont, H., and Weber, E., in Crystal Growth Technology, (William Andrew Inc., 2003), Ch. 2: pp. 2554.Google Scholar