Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T02:37:46.086Z Has data issue: false hasContentIssue false

Surface-modified Zirconium Oxide Clusters and their Use as Components for Inorganic-Organic Hybrid Materials

Published online by Cambridge University Press:  01 February 2011

Yu Gao
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
Denise Silvia Dragan
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
Myhedin Jupa
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
Franz René Kogler
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
Michael Puchberger
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
Ulrich Schubert
Affiliation:
Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
Get access

Abstract

Pre-formed transition metal oxide clusters with methacrylate ligands were polymerized in the presence of organic co-monomers to form inorganic-organic hybrid polymers. The number of polymerizable ligands and thus the crosslinking density of the hybrid polymers can be varied for a given cluster type by partially exchanging the methacrylate ligands for non-reactive ones. The properties of the hybrid polymers can also be varied by adjusting the conditions of the polymerization reaction, especially by a pre-polymerization procedure. It is shown that the thermal stability of polystyrene crosslinked by Zr6O4(OH)4(OMc)12 is thus greatly improved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Review article: Schubert, U., Chem. Mater. 13, 3487 (2001).Google Scholar
2. Sanchez, C., Lebeau, B., Ribot, F. and In, M., J. Sol-Gel Sci. Technol. 19, 31 (2000).Google Scholar
3. Trimmel, G., Fratzl, P. and Schubert, U., Chem. Mater. 12, 602 (2000).Google Scholar
Schubert, U., Trimmel, G., Moraru, B., Tesch, W., Fratzl, P., Gross, S., Kickelbick, G. and Hüsing, N., Mat. Res. Soc. Symp. Proc. 628, CC2.3.1 (2001).Google Scholar
Trimmel, G., Gross, S., Kickelbick, G. and Schubert, U., Appl. Organomet. Chem. 15, 401 (2001).Google Scholar
Moraru, B., Hüsing, N., Kickelbick, G., Schubert, U., Fratzl, P. and Peterlik, H., Chem. Mater. 14, 2732 (2002).Google Scholar
Schubert, U., Völkel, Th. and Moszner, N., Chem. Mater. 13, 3811 (2001).Google Scholar
Gross, S., Di Noto, V. and Schubert, U., J. Non-Cryst. Solids 322, 154 (2003).Google Scholar
4. Gross, S., Di Noto, V., Kickelbick, G. and Schubert, U., Mat. Res. Soc. Symp. Proc. 726, 47 (2002).Google Scholar
5. Kickelbick, G. and Schubert, U., Chem. Ber. 130, 473 (1997).Google Scholar
6. Kogler, F. R., Jupa, M., Puchberger, M. and Schubert, U., J. Mater. Chem. 14, 3133 (2004).Google Scholar
7. Moraru, B., Kickelbick, G., Battistella, M. and Schubert, U., J. Organomet. Chem. 636, 172 (2001).Google Scholar
8. Odian, G., Principle of Polymerization, 4th ed. (J. Wiley & Sons, New York, 2004).Google Scholar
9. See also: Gao, Y., Choudhury, N.R., Matisons, J., Schubert, U. and Moraru, B., Chem. Mater. 14, 4522 (2002).Google Scholar