Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:18:10.882Z Has data issue: false hasContentIssue false

Surface-Enhanced Infrared Absorption and Raman Scattering of Adsorbate Molecules on Self-assembled Au Nanorods

Published online by Cambridge University Press:  11 March 2011

Li-Lin Tay
Affiliation:
National Research Council Canada, Ottawa, ON, Canada K1A 0R6
John Hulse
Affiliation:
National Research Council Canada, Ottawa, ON, Canada K1A 0R6
Nelson Rowell
Affiliation:
National Research Council Canada, Ottawa, ON, Canada K1A 0R6
Jeff Fraser
Affiliation:
National Research Council Canada, Ottawa, ON, Canada K1A 0R6
Ping-Ji Huang
Affiliation:
Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, Taiwan
Get access

Abstract

The localized surface plasmon resonance (LSPR) is a collective oscillation of conduction electrons confined in metal nanostructures and is largely responsible for surface enhanced spectroscopies. Surface enhanced Raman scattering (SERS) is the best known and most widely applied example of such a surface enhanced spectroscopy. Although closely related and complementary to SERS, surface enhanced infrared absorption (SEIRA) spectroscopy requires more careful engineering of the LSPR of metal nanostructures so that the resonance is within the mid-infrared region. In this study, we demonstrate the use of gold nanorods (Au NR) as a suitable substrate capable of sustaining strong SEIRA spectroscopy. Adsorbate saturated Au NR typically exhibit Fano-type resonances in their SEIRA spectra obtained using reflectance FTIR. Such line asymmetry occurs due to the coupling of the relatively sharp molecular vibrations to the broad continuum of the LSPR resonance of the aggregated Au NR.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lal, S., Grady, N. K., Kundu, J., Levin, C. S., Lassiter, J. B., and Halas, N. J., Chemical Society Reviews 37, 898(2008).Google Scholar
2. Le, F., Brandl, D. W., Urzhumov, Y. A., Wang, H., Kundu, J., Halas, N. J., Aizpurua, J., and Nordlander, P., Acs Nano 2, 707(2008).Google Scholar
3. Kundu, J., Le, F., Nordlander, P., and Halas, N. J., Chemical Physics Letters 452, 115 (2008).Google Scholar
4. Moskovits, M., Review of Modern Physics 57, 42 (1985).Google Scholar
5. Moskovits, M., Raman, J. Spectrosc. 36, 485 (2005).Google Scholar
6. Murphy, C. J., San, T. K., Gole, A. M., Orendorff, C. J., Gao, J. X., Gou, L., Hunyadi, S. E., and Li, T., Journal of Physical Chemistry B 109, 13857 (2005).Google Scholar
7. Jain, P. K., Eustis, S., and El-Sayed, M. A., Journal of Physical Chemistry B 110, 18243(2006).Google Scholar
8. Lee, K. S. and El-Sayed, M. A., Journal of Physical Chemistry B 109, 20331(2005).Google Scholar
9. Nikoobakht, B. and El-Sayed, M. A., Chemistry of Materials 15, 1957(2003).Google Scholar
10. Johnson, C. J., Dujardin, E., Davis, S. A., Murphy, C. J., and Mann, S., Journal of Materials Chemistry 12, 1765(2002).Google Scholar
11. Wang, H., Kundu, J., and Halas, N. J., Angewandte Chemie-International Edition 46, 9040(2007).Google Scholar
12. Krauth, O., Fahsold, G., Magg, N., and Pucci, A., Journal of Chemical Physics 113, 6330(2000).Google Scholar
13. Krauth, O., Fahsold, G., and Pucci, A., Journal of Chemical Physics 110, 3113(1999).Google Scholar