Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T05:48:43.577Z Has data issue: false hasContentIssue false

Surface-Controlled Reactivity of Metal Carbonates

Published online by Cambridge University Press:  10 February 2011

P. V. Brady*
Affiliation:
Geochemistry Research (MS-0750), Sandia National Laboratories, Albuquerque, NM 87185, [email protected]
Get access

Abstract

Metal carbonate surfaces are a common component of soils, sediments, terrestrial organisms, and many engineered structures. The surface-controlled growth and dissolution of metal carbonate minerals (e.g. calcite) often affects fluid flow in pipes (through scaling) as well as the nanoscale assembly of complex biologic structures (similar reactions control Ca levels in the oceans, and ultimately, long-term CO2 levels). Engineering metal carbonate surface chemistry to enhance or inhibit growth, dissolution, or crystal nucleation is therefore an area with obvious economic impact. Metal carbonate superstructures are rapidly altered by dissolution/re-precipitation reactions, necessitating the measurement of surface chemistry near equilibrium. Measurements of metal sorption using limited residence time reactors point to the importance of adsorbed/exchanged metal ions in controlling surface charge and electrokinetic behavior. The same reactions appear to control growth and dissolution rates as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Morse, J. W., Marine Chem. 20, 112 (1986).Google Scholar
[2] Mann, S., Nature 332, 119 (1988).Google Scholar
[3] Vasconcelos, C., MacKenzie, J. A., Bernasconi, S., Grujic, D.. and Tien, A. J., Nature 377, 220 (1996).Google Scholar
[4] Kitano, Y., Kanamori, N. Geochem. J. 1, 1 (1966).Google Scholar
[5] Zhang, J. W. and Nancollas, G., Rev. Min. 23, 365 (1990).Google Scholar
[6] Davis, J. A. and Kent, D. B., Rev. Min. 23, 177 (1990).Google Scholar
[7] Wersin, P., Ph. D. Thesis, Swiss Federal Institute of Technology, 1990.Google Scholar
[8] Thompson, D. W. and Pownall, P. G., P.G. J. Colloid Interface Sci. 131, 74 (1989).Google Scholar
[9] Carroll, S. A. and Papenguth, H. W. (private communication).Google Scholar
[10] Charlet, L., Wersin, P. and Stumm, W., Geochim., W. Cosmochim. Acta. 54, 2329 (1991).Google Scholar
[11] Van Cappellen, P., Charlet, L., Stumm, L. and W., Geochim, W.. Cosmochim. Acta. 57, 3505 (1993).Google Scholar
[12] Zachara, J. M., Kittrick, J. A. and Harsh., J. B. Geochim. Cosmochim. Acta. 52, 2281 (1988).Google Scholar
[13] Zachara, J. M., Cowan, C. E.. and Resch, C. T., Geochim. Cosmochim. Acta. 55, 1549 (1991).Google Scholar
[14] McBride, M. B. Soil Sci. Soc. Amer. J. 41, 693(1979).Google Scholar
[15] Stipp, S. L. and Hochella, M. F. Jr., Geochim. Cosmochim. Acta. 55, 1723 (1991).Google Scholar
[16] Davis, J. A., , C. C. and Cook, A. D. Geochim, A. D.. Cosmochim. Acta 51, 1477 (1987).Google Scholar
[17] House, W. A., , W.A. and Donaldson, L., L. J. Coll. Interf. Sci. 112, 309 (1986).Google Scholar
[18] deKanel, J. and Morse, J. W., Geochim. Cosmochim. Acta. 42, 1335 (1978).Google Scholar
[19] Comans, R. N. and Middleburg, J. J., Geochim. Cosmochim. Acta 51, 2587 (1987).Google Scholar
[20] Zullig, J. J. and Morse, J. W., Geochim. Cosmochim. Acta. 52, 1667.Google Scholar
[21] Nancollas, G. G. and Reddy, M. M., J. Coll. Interf. Sci. 37, 824 (1971).Google Scholar
[22] Nielsen, A. E. and Toff, J. M., J. Crystal Growth. 67, 278 (1984).Google Scholar
[23] Mucci, A. and Morse, J. W., Amer. J. Sci. 285, 306 (1985).Google Scholar
[24] Gratz, A. J., Hillner, P. E. and Hansma, P. K., Geochim. Cosmochim. Acta. 57, 491 (1993).Google Scholar
[25] Dove, P. M. and Jr., M. F. Hochella Geochim. Cosmochim. Acta. 1993, 57, 705714.Google Scholar
[26] Landau, E. M., Wolf, S. Grayer, Levanon, M., Leiserowitz, L., Lahav, M.. and Sagiv, J. J., Am. Chem. Soc. 111, 1436 (1989).Google Scholar
[27] Mann, S., Heywood, B. R., Rajam, S., Walker, J. B. A., J. Phys. D: Appl Phys. 24, 154(1991).Google Scholar
[28] Heywood, B. R. and Mann, S., Adv. Mater. 6, 9 (1994).Google Scholar
[29] Compton, R. G. and Brown, C. A., J. Coll. Interf. Sci. 165, 445 (1994).Google Scholar
[30] Morrow, D. W., Geosci. Canada. 9, 5(1982).Google Scholar
[31] Morrow, D. W. and Ricketts, B. D., Geol. 14, 408 (1986).Google Scholar
[32] Brätter, P., Möller, P. and Rösick, U., Earth. Planetary. Sci. Letters. 14, 50 (1972).Google Scholar
[33] Berner, R. A., Am. J. Sci. 265, 45 (1967)Google Scholar
[34] Brady, P. V., Papenguth, H. W. (ms in DOE internal review).Google Scholar
[35] Brady, P. V., Krumhansl, J. L. and Papenguth, H. W., Geochim. Cosmochim. Acta. 60, 727 (1996).Google Scholar
[36] Baker, P. and Kastner, M., Science 213, 214 (1981).Google Scholar
[37] Siegel, F. R., State Geol. Surv. Kansas Bull. 152, 129 (1961).Google Scholar