Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:57:21.932Z Has data issue: false hasContentIssue false

Surface Reconstruction of MBE-Grown GeXSi1−x on Si(111)

Published online by Cambridge University Press:  26 February 2011

C. F. Huang
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024–1600
R. P. G. Karunasiri
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024–1600
J. S. Park
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024–1600
K. L. Wang
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024–1600
T. W. Kang
Affiliation:
T.W. Kang was on leave from Dongguk University, Korea.
Get access

Abstract

Surface reconstruction during the molecular beam epitaxy (MBE) growth of GexSi1−x ( x = 0.2 - 1.0 ) film on Si(111) was studied using reflection high energy electron diffraction (RHEED). A series of reconstruction pattern transitions was observed due to the formation of strain layer and its relaxation. The critical thickness obtained using the thickness of the GexSil-x film at the transition of the reconstruction pattern agrees well with the previously reported values. The strain dependence of RHEED patterns for GexSi1−x film was substantiated by Raman scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S., and Robinson, I. K., J. Vac. Sci. Technol. A 2, 436 (1984).Google Scholar
2.Wang, K. L., Solid State Technol. Oct.137 (1985).Google Scholar
3.People, R., IEEE J. Quantum Electronics, QE-22, 1696 (1986).Google Scholar
4.Gossmann, H. J., Bean, J. C., Feldman, L. C., and Gibson, W. M., Surf. Sci. 138, L175 (1984).Google Scholar
5.McRae, E. G. and Malic, R. A., Surf. Sci. 163, L702 (1985).Google Scholar
6.Shoji, K., Hyodo, M., Ueba, H., and Tatsuyama, C., Japan J. Appl. Phys. 22, L200 (1983).Google Scholar
7.Seo, J. M., Doering, D.L., Black, D. S., and Rowe, J. E., J. Vac. Sci. Technol.A 4, 894 (1986).Google Scholar
8.Huang, C. F., Karunasiri, R. P. G., Wang, K. L.,and Kang, T. W., Proc. 8th Molecular Beam Epitaxy Workshop, UCLA, Los Angeles, Sep. 1987.Google Scholar
9.Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
10.Huang, C. F., Karunasiri, R. P. G., Wang, K. L., and Kang, T. W., Proc. 2nd Intern. Symp. on Silicon Molecular Beam Epitaxy, Honolulu, Hawaii, Oct. 1987.Google Scholar
11.Van der Merwe, J. H., J. Appl. Phys. 34, 123 (1962).Google Scholar
12.Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
13.People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1986).Google Scholar
14.Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S., and Robinson, I. K., J. Vac. Sci. & Technol. A 2, 436 (1984).Google Scholar
16.Sakamoto, K., Sakamoto, T., Nagao, S., Hashiguchi, G., Kuniyoshi, K., and Bando, Y., Japan. J. Appl. Phys. 26, 666 (1987).Google Scholar
17.Philips, J.C., Phys. Rev. Lett. 45, 905.(1980).Google Scholar