Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:30:46.324Z Has data issue: false hasContentIssue false

Surface properties of disordered γ MnO2 at the solid-electrolyte interface.

Published online by Cambridge University Press:  11 February 2011

Bénédicte Prélot
Affiliation:
Laboratoire d'Electrochimie et de Physico-Chimie des Matériaux et des Interfaces-CNRS UMR, 5631 INPG-ENS Electrochimie Electrométallurgie Grenoble, BP 75, F-38402 St Martin d'Heres Cedex Laboratoire Environnement et Minéralurgie CNRS UMR 7569 INPL-ENS Géologie, BP 40, F-54501 Vandoeuvre-les-Nancy Cedex.
Christiane Poinsignon
Affiliation:
Laboratoire d'Electrochimie et de Physico-Chimie des Matériaux et des Interfaces-CNRS UMR, 5631 INPG-ENS Electrochimie Electrométallurgie Grenoble, BP 75, F-38402 St Martin d'Heres Cedex
Fabien Thomas
Affiliation:
Laboratoire Environnement et Minéralurgie CNRS UMR 7569 INPL-ENS Géologie, BP 40, F-54501 Vandoeuvre-les-Nancy Cedex.
Frédéric Villiéras
Affiliation:
Laboratoire Environnement et Minéralurgie CNRS UMR 7569 INPL-ENS Géologie, BP 40, F-54501 Vandoeuvre-les-Nancy Cedex.
Get access

Abstract

Relationships between lattice parameters of manganese dioxides (γ/ε-MD) and their surface properties at the solid-aqueous solution interface were investigated. The studied series ranged from orthorhombic ramsdellite to tetragonal pyrolusite and encompassed disordered MD samples. The structural model used takes into account two structural defects which affect the orthorhombic network of ramsdellite: Pr (rate of pyrolusite intergrowth) and Tw (rate of microtwinning). Water adsorption isotherms showed that the cross sectional surface area of water molecules is linearly correlated to Pr: from 6.3 Å2 (Pr=0.2) to 13.1 Å2 (Pr=1). Titration of their surface charge evidenced a linear relationship between PZC and Pr starting from ramsdellite (Pr = 0, Tw = 0, PZC = 1) to pyrolusite (Pr = 1, Tw = 0, PZC = 7.3). γ-MD with intermediate values of Pr (0.2 to 0.45) have increasing PZC values. For similar Pr values (0.45), high Tw percentage (0.3 and 1) makes the PZC to increase. The experimental results are compared with data collected in the literature for dioxides of transition elements with tetragonal structure. Surface titration leads to the determination of electrochemically active surface area at alkaline pH.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Poinsignon, C., Tedjar, F., Amarilla, J.M., J. Mater. Chem‥ 12, 1227 (1993).Google Scholar
2. Chabre, Y., and Pannetier, J., Prog. Solid St. Chem. 23, 1 (1995).Google Scholar
3. McLean, L., Poinsignon, C., Amarilla, J.M., Lecras, F., and Strobel, P., J. Mater. Chem. 8, 1183 (1995).Google Scholar
4. Djurado, E., Meunier, E. J. Solid Stat Chem. 141, 191198,(1998).Google Scholar
5. Prélot, B., Poinsignon, C., Thomas, F., Villiéras, F., J. Colloid Interface Sci. in press (2002).Google Scholar
6. Poirier, J.E., François, M., Cases, J.M., and Rouquerol, J., In: Proceedings of the second engineering foundation conference on fundamental adsorption. Liapis, A.I. (ed.). New York. AIChE Pub., 473482, 1987.Google Scholar
7. Byström, A.M., Acta Chem. Scand. 3, 163 (1949).Google Scholar
8. Baur, W.H., Acta Cryst. 32, 2000 (1976).Google Scholar
9. Hagymassy, J. Jr, Brunauer, S., and Mikhail, R.S., J. Colloid and Interface Sci. 29, 485 (1969).Google Scholar
10. Maskell, W.C., Shaw, J.E.A., Tye, F.L. J. App. Electrochem. 12, 101, (1982).Google Scholar
11. Carre, A., Roger, F., and Varinot, C., J. Colloid and Interface Sci. 154, 174 (1992).Google Scholar
12. Tamura, H., Oda, T., Katayama, M., and Furuichi, R., Environ. Sci. Technol. 30, 1198 (1996).Google Scholar
13. Pauling, L., “The nature of the chemical bond“. 3rd Edition, Cornell University Press, Ithaca, N.Y. 1960.Google Scholar
14. Parks, G.A., Chem. Review 65, 153 (1965).Google Scholar
15. Yoon, R.H., Salman, T., and Donnay, G., J. Colloid and Interface Sci. 70, 483 (1979).Google Scholar
16. Bleam, W., J. Colloid and Interface Sci. 159, 312 (1993).Google Scholar
17. Hiemstra, T., de Witt, J.C.M., and Van Riemsdjik, W.H., J. Colloid Interface Sci. 133, 91 (1989).Google Scholar
18. Healy, T.W., Herring, A.P., and Fuerstenau, D.W., J. Colloid Interface Sci. 21, 435 (1966).Google Scholar