Published online by Cambridge University Press: 10 August 2011
Selected properties of the lanthanum zirconate (La2Zr2O7, LZ) low-index faces, representing the first theoretical attempt to characterize the surfaces of a pyrochlore oxide, as well as oxygen (O2) interacting with LZ are predicted at the level of density-functional theory. All possible surface terminations formed by cleaving a perfect crystal are considered, as well as selected defective surfaces. After deriving the expression for the free energy of an LZ surface, surface free energies are computed. The most stable surfaces are identified, and it is suggested how to refine the ratios of surface free energies for comparison to experimental results obtained by the analysis of x-ray diffraction (XRD) patterns. The interaction of O2 with selected faces is examined. A strong dependence of the binding energy on surface oxygen content is predicted.