Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T03:13:41.614Z Has data issue: false hasContentIssue false

Surface Processing And Micromachining of Polyimide Driven by A High Average Power Infra-Red Free Electron Laser

Published online by Cambridge University Press:  10 February 2011

Michael J. Kelley*
Affiliation:
Dept. of Applied Science, The College of William and Mary, Williamsburg VA 23187-7895 Thomas Jefferson National Accelerator Facility, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606
Get access

Abstract

The long history and wide use of polyimide as a dielectric in the microelectronics industry has made it a favorite material for laser processing studies. The FEL used in the present work delivered picosecond-long 25 microjoule pulses at approximately 3.10 and 5.80 microns. The former is not associated with any strong absorption, while the latter is the strongest absorption band in the IR. This study explored hole drilling and surface transformation of as-made and aluminized DuPont Kapton HN PMDA-ODA polyimde film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brannon, J.H., Lankard, J.R., Baise, A.I., Bums, F., Kaufman, J.; J.Appl.Phys. 58 (1985) 20362043.Google Scholar
2 Brannon, J.H., Wassick, T.A.; in “Laser Applications in Microelectronic and Optoelectronic Manufacturing” Proc. SPIE 2991 (1997) 146150.Google Scholar
3 Sutcliffe, E. and Srinivasan, R.; J.Appl.Phys. 60 (1986) 33153322.Google Scholar
4 Srinivasan, R., Braren, B.; in “Lasers in Polymer Science and Technology: Applications”, Fogarassy, P. and Rabek, J.F. eds, CRC Press, 133179 (1990).Google Scholar
5 LaFemina, J.P., Arjavalingam, G. and Hougham, G.; J. Chem. Phys. 90 (1989) 51545160.Google Scholar
6 Kelley, M.J., Cohen, J.D., Erkenbrecher, C.W., Haynie, S.L., Kobsa, H., Roe, A.N., Scholla, M.H.; Mat.Res.Soc.Symp.Proc. 397 (1996) 353356.Google Scholar
7 Hohman, J.L., Keating, K.B., Kelley, M.J.; Mat.Res.Soc.Symp. Proc. 354 (1995) 571577.Google Scholar
8 Nagarankar, P.V., Sichel, E.K.; J.Electrochem.Soc. 136 (1989) 29792982.Google Scholar
9 Freund, H.P., Neil, G.R.; Proc.IEEE 87 (1999) 782803.Google Scholar
10 Benson, S.V.; Proc.1999 IEEE Part. Accel. Conf. 1 (1999) 212216.Google Scholar
11 Beninghoven, A.; Angew.Chem.Int. Ed.Engl. 33 (1994) 10231043.Google Scholar
12 Wien, K.; Nucl.Instr.Meth.Phys.Res.B 131 (1997) 3854.Google Scholar
13 Wolany, D., Fladung, T., Duda, L., Lee, J.W., Gantenfort, T., Benninghoven, A.; Surf.Interface Anal. 27 (1999) 609617.Google Scholar