Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:35:34.105Z Has data issue: false hasContentIssue false

Surface Potential Measurements of doping and defects in p-GaN

Published online by Cambridge University Press:  01 February 2011

M. Losurdo
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4–70126 Bari, Italy
M. M. Giangregorio
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4–70126 Bari, Italy
G. Bruno
Affiliation:
Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4–70126 Bari, Italy
A. S. Brown
Affiliation:
Department of Electrical and Computer Engineering, Duke University, Durham, NC 27709, USA
W. A. Doolittle
Affiliation:
Georgia Institute of Technology, Microelectronic Research Center, 791 Atlantic Dr, Atlanta, GA, USA
Gon Namkoong
Affiliation:
Georgia Institute of Technology, Microelectronic Research Center, 791 Atlantic Dr, Atlanta, GA, USA
A. J. Ptak
Affiliation:
National Renewable Energy Lab, Golden, Colorado T. H. Myers, Department of Physics, West Virginia University, Morgantown, WV 26506, USA
Get access

Abstract

The interaction of Be-, Mg-, and Si- doped GaN epitaxial films with atomic hydrogen, produced by a remote r.f. hydrogen plasma, is investigated. The kinetics of the interaction is monitored in real time by spectroscopic ellipsometry through the measurement of the variation of the GaN pseudodielectric function. The passivation effect of hydrogen is inferred by surface potential measurements using scanning Kelvin probe microscopy (SKPM). It is found that the interaction of GaN with hydrogen is a strong function of both the type and level of the doping. Hydrogen treatment is shown to lead to a strong variation of the surface potential and, hence, of the Fermi level position, which is the result of p-dopant passivation by hydrogen. A different interaction of Mg and Be with atomic hydrogen is also observed and monitored in real time by ellipsometry. SKPM is also used for studying the interaction of defects in GaN with atomic hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Iwasa, N, Senoh, M., Mukai, T., Jpn. J. Appl. Phys. Part I 31, 1258 (1992).Google Scholar
2. Neugebauer, J., Van de Walle, C.G., Appl. Phys. Lett. 68, 1829 (1996).Google Scholar
3. Polyakov, A.Y., Smirnov, N.B., Govorkov, A.V., Baik, K.H., Pearton, S.J., Luo, B., Ren, F., Zavada, J.M., J. Appl. Phys. 94, 3960 (2003) and reference therein.Google Scholar
4. Theys, B., Teukam, Z., Jomard, F., de Mierry, P., Polyakov, A.Y., Berbe, M., Semicond. Sci. Technol. 16, L53 (2001).Google Scholar
5. Neugebauer, J., Van de Walle, C.G., J. Appl. Phys. 85, 3003 (1999).Google Scholar
6. Simpkins, B.S., Schaadt, D.M., Yu, E.T., Molnar, R.J., J. Appl. Phys. 91, 9924 (2002).Google Scholar
7. Ptak, A.J., Myers, T.H., Wang, L., Giles, N.C., Moldovan, M., Da Cunha, C.R., Hornak, L.A., Tian, C., Hockett, R.A., Van Lierde, P., Mat. Res. Soc. Symp. 639, G3.3 16 (2001).Google Scholar
8. Namkoong, G., Doolittle, W.A., brown, A.S., Losurdo, M., Capezzuto, P., Bruno, G., J. Appl. Phys. 91, 2499 (2002).Google Scholar
9. Hsu, J.W.P., Ng, H.M., Sergent, A.M., Chu, S.N.G., Appl. Phys. Lett. 81, 3579 (2002).Google Scholar
10. Simpkins, B.S., Yu, E.T., Waltereit, P., Speck, J.S., J. Appl. Phys. 94, 1448 (2003).Google Scholar
11. Popovici, G. and Morkoc, H., in GaN and Related Materials, edited by Pearton, S.J. (Gordon and Breach, Amsterdam, 2000) pp-173234.Google Scholar
12. Van de Walle, C.G., Limpijummong, S., Neugebauer, J., Phys. Rev. B, 63, 245205 (2001),Google Scholar