Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:53:04.264Z Has data issue: false hasContentIssue false

Surface Plasmon Excitation in Three-dimensional, Ordered, Gold Nanocrystal Arrays Using a Prism Coupler

Published online by Cambridge University Press:  01 February 2011

Kai Yang
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, 1313 Goddard SE, Albuquerque, NM, 87106, United States, (505) 272-7805, (505) 272-7806
Hongyou Fan
Affiliation:
[email protected], Sandia National Laboratories, Advanced Materials Laboratory, United States
Michael J. O'Brien
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, United States
Kevin J. Malloy
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, United States
Gabriel P. Lopez
Affiliation:
[email protected], University of New Mexico, Department of Chemical & Nuclear Engineering, United States
Jeffrey C. Brinker
Affiliation:
[email protected], Sandia National Laboratories, Advanced Materials Laboratory, United States
Mansor Sheik-Bahae
Affiliation:
[email protected], University of New Mexico, Department of Physics and Astronomy, United States
Thomas W. Sigmon
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials, United States
Get access

Abstract

We report plasmon excitation in 3-dimensional, ordered, gold nanocrystal(NC) arrays using a prism coupler. The gold NCs are arranged in the silica host matrix in a face-centered cubic lattice with the mono-dispersion gold core size of ∼3 nm. We observed the collective optical behavior of the gold NC array and found a blue shift in the plasmon absorption peak with increasing gold volume fraction (Au loading). Plasmon resonance bands centered at 536, 530 and 520 nm are measured for gold NC arrays with gold loading factors of 0.25, 0.5 and 1.0, respectively. The corresponding angular spectra of the gold NC arrays show resonance angles at 60.3, 63.3 and 66.4 degree.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, K., Fan, H. Y., Malloy, K. J., Brinker, C. J., and Sigmon, T. W., Thin solid Films, 491, 38 (2005)Google Scholar
2. Fan, H. Y., Yang, K., Boye, D. M., Sigmon, T. W., Malloy, K. J., Xu, H., Lopez, G. P., and Brinker, C. J., Science, 304, 567 (2004)Google Scholar
3. Mirkin, C. A., Letsinger, R. L., Mucic, R. C., Storhoff, J. J., Nature, 382, 607 (1996)Google Scholar
4. Barnes, W. L., Dereux, A., and Ebbesen, T. W., Nature, 424, 824 (2003)Google Scholar
5. Debrus, S., Lafait, J., May, M., Pincon, N., Prot, D., Sella, C., and Venturini, J., J. Appl. Phys., 88 (8), 4469 (2000)Google Scholar
6. Haes, A. J., and Van Duyne, R. P., J. Amer. Chem. Soc., 124, 10596 (2002)Google Scholar
7. Yang, K., Fan, H. Y., O'Brien, M. J., Malloy, K. J., Sigmon, T. W., Lopez, G. P., Brinker, C. J., and Sheik-Bahae, M., CLEO/QELS Technique Digest, 2005 Google Scholar
8. Fromm, D. P., Sundaramurthy, A., Schuck, P. J., Kino, G., and Moerner, W. E., Nano Letters, 4, 957 (2004)Google Scholar
9. O'Brien, M. J., Perez-Luna, V. H., Brueck, S. R. J., and Lopez, G. P., Biosensors & Bioelectronics, 16(1–2), 97 (2001)Google Scholar