Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:38:55.492Z Has data issue: false hasContentIssue false

Surface Plasmon Enhanced Photoluminescence in InAs Quantum Dots by Spherical Ag Nanoparticles

Published online by Cambridge University Press:  12 April 2012

Scott C. Mangham
Affiliation:
Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, U.S.A.
Jiang Wu
Affiliation:
Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, U.S.A.
Seungyong Lee
Affiliation:
Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, U.S.A.
Vanga R. Reddy
Affiliation:
Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, U.S.A.
Omar Manasreh
Affiliation:
Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, U.S.A.
Get access

Abstract

Reported is the photoluminescence enhancement due to surface plasmon from the metallic nanoparticles that are linked to the surface of a GaAs capped InAs quantum dots. In this study, spherical silver (Ag) nanoparticles are investigated where the different densities of Ag nanoparticles are deposited on four InAs/GaAs quantum dot samples. The PL enhancement due to Ag nanoparticles has been observed to be improved with increasing nanoparticle density. The photoluminescence enhancement is interpreted in terms of enhanced scattering from the surface plasmon excited in the Ag nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kulakovich, Olga et al. ., “Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids,” Nano Letters 2(12), 14491452 (2002).Google Scholar
2. Hanke, T. et al. ., “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys.Rev.Lett. 103(25), 257404 (2009).Google Scholar
3. Urbańczyk, A., Hamhuis, G. and Nötzel, R., “Single InGaAs Quantum Dot Coupling to the Plasmon Resonance of a Metal Nanocrystal,” Nanoscale Research Letters 5(12), 19261929 (2010).Google Scholar
4. Okamoto, Koichi et al. ., “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl.Phys.Lett. 87(7), 071102 (2005).Google Scholar
5. Biteen, Julie S. et al. ., “Plasmon-Enhanced Photoluminescence of Silicon Quantum Dots: Simulation and Experiment,” The Journal of Physical Chemistry C 111(36), 1337213377 (2007).Google Scholar
6. Catchpole, K. R. and Polman, A., “Plasmonic solar cells,” Opt. Express 16, 2179321800 (2008).Google Scholar
7. Kwon, Min-Ki et al. ., “Surface-plasmon-enhanced light-emitting diodes,” Adv Mater 20(7), 1253 (2008).Google Scholar
8. Liu, Wen et al. ., “Surface plasmon enhanced GaAs thin film solar cells,” Solar Energy Mater. Solar Cells 95(2), 693698 (2011).Google Scholar
9. Beck, F. J., Mokkapati, S. and Catchpole, K. R., “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles,” Prog Photovoltaics Res Appl 18(7), 500504 (2010).Google Scholar
10. Jun Lee, Sang et al. ., “A monolithically integrated plasmonic infrared quantum dot camera,” Nat.Commun. 2, 286 (2011).Google Scholar
11. Cheng, C. W. et al. ., “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl.Phys.Lett. 96(7), 071107 (2010).Google Scholar
12. Jin, Li-Hua et al. ., “Quenching dynamics in CdSe/ZnS core/shell quantum dots-gold nanoparticle conjugates in aqueous solution,” J.Appl.Phys. 109(12), 124310 (2011).Google Scholar
13. Wu, Jiang et al. ., “Photoluminescence plasmonic enhancement in InAs quantum dots coupled to gold nanoparticles,” Mater Lett 65(23-24), 36053608 (2011).Google Scholar
14. Lin, J. et al. ., “Surface plasmon enhanced UV emission in AlGaN/GaN quantum well,” Appl.Phys.Lett. 97(22), 221104 (2010).Google Scholar
15. Huang, Zengli et al. ., “Mechanism on Effect of Surface Plasmons Coupling with InGaN/GaN Quantum Wells: Enhancement and Suppression of Photoluminescence Intensity,” Appl. Phys. Express 3, 072001 (2010).Google Scholar
16. Lu, Liu et al. ., “Photoluminescence quenching and enhancement of CdSe/PMMA composite on Au colloids,” Chem.Phys.Lett. 492(1-3), 7176 (2010).Google Scholar
17. Urbanczyk, A., Hamhuis, G. J. and Noetzel, R., “Coupling of single InGaAs quantum dots to the plasmon resonance of a metal nanocrystal,” Appl.Phys.Lett. 97(4), 043105 (2010).Google Scholar
18. Viste, Pierre et al. ., “Enhancement and Quenching Regimes in Metal-Semiconductor Hybrid Optical Nanosources,” ACS Nano 4(2), 759764 (2010).Google Scholar
19. Komarala, Vamsi K. et al. ., “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dotsAppl.Phys.Lett. 89(25), 253118 (2006).Google Scholar
20. Biteen, Julie S. et al. ., “Plasmon-Enhanced Photoluminescence of Silicon Quantum Dots:Simulation and Experiment,” The Journal of Physical Chemistry C 111(36), 1337213377 (2007).Google Scholar
21. Mertz, Jerome, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J Opt Soc Am B 17(11), 19061913 (2000).Google Scholar
22. Benisty, H., Stanley, R. and Mayer, M., “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15(5), 11921201 (1998).Google Scholar
23. Liu, CS and Kauffman, JF, “Excitation power dependence of photoluminescence enhancement from passivated GaAs,” Appl.Phys.Lett. 66(25), 35043506 (1995).Google Scholar
24. Gargas, Daniel J. et al. ., “High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires.” Nano letters 11(9), 37923796 (2011).Google Scholar
25. Okamoto, Koichi, Vyawahare, Saurabh and Scherer, Axel, “Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals,” Journal of the Optical Society of America B 23(8), 1674 (2006).Google Scholar