Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T11:10:24.789Z Has data issue: false hasContentIssue false

Surface Oriented Self-Assembly of Carbon Nanotubes

Published online by Cambridge University Press:  21 March 2011

Kousik Sivakumar
Affiliation:
Delaware MEMS and Nanotechnology Laboratory Department of Electrical Engineering, University of Delaware, Newark, Delaware 19716, U.S.A.
Balaji Panchapakesan*
Affiliation:
Delaware MEMS and Nanotechnology Laboratory Department of Electrical Engineering, University of Delaware, Newark, Delaware 19716, U.S.A.
*
Corresponding author email: [email protected]
Get access

Abstract

In this paper, we demonstrate the self assembled growth of nanotubes along the surface of (100), (110) and (111) silicon wafers using thermal CVD. Iron nanoparticles, 10 nm in diameter, were used as the catalyst. Carbon nanotubes were grown in a methane atmosphere at 1000°C. SEM and AFM characterization revealed single wall carbon nanotubes, about 10 nm in diameter and up to 10 νm in length, growing along the <111> direction of the silicon wafer. The mechanism of growth of nanotubes is similar to that of molecular epitaxy which occurs due to the lattice matching of the silicon and iron crystal lattices forming self aligned silicides at high temperature which help orient the nanotubes. This process may enable the integration of nanotubes with CMOS processing technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S. Nature (London) 1991, 354, 56.Google Scholar
2. Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zou, W. Y., Zhao, R. A., Wang, G., Science 274, 1701 (1996).Google Scholar
3. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., Provencio, P. N., Science 282, 1105 (1998).Google Scholar
4. Schlittler, R. R., Seo, J. W., Gimzewski, J. K., Durkan, C., Saifullah, M. S. M., Welland, M. E., Science 292, 1136 (2001).Google Scholar
5. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., Dai, H., Science 283, 512 (1999).Google Scholar
6. Zhang, W. D., Thong, J. T. L., Tjiu, W. C., Gan, L. M., Diamond and Related Materials 11, 1638 (2002).Google Scholar
7. Bockrath, M., Cobden, D. H., McEuen, P. L., Chopra, N. G., Zettl, A., Thess, A., Smalley, R. E., Science 275, 1922 (1997).Google Scholar
8. Tang, X. P., Kleinhammes, A., Shimoda, H., Fleming, L., Bennoune, K. Y., Sinha, S., Bower, C., Zhou, O., Wu, Y., Science 288, 492 (2000).Google Scholar
9. Burghard, M. et al. Science 284, 1508 (1999).Google Scholar
10. Smalley, R. E. et al. Science 297, 593 (2002).Google Scholar
11. Guiseppi-Elie, A., Lei, C., Baughman, R. H., Nanotechnology 13, 559 (2002).Google Scholar
12. Avouris, P., Chemical Physics 281, 429 (2002).Google Scholar
13. Thostenson, E. T., Ren, Z., Chou, T. W., Composite Science and Technology 61, 1899 (2001).Google Scholar
14. Lou, J. P., Journal of the Physics and Chemistry of Solids 58, 1649 (1997).Google Scholar
15. Ru, C. Q., Physical Review B 62, 9973 (2000).Google Scholar
16. Hernandez, E., Goze, C., Bernier, P., Rubio, A., Physical Review Letters 80, 4502 (1998).Google Scholar
17. Zhang, Y., Chang, A., Cao, J., Wang, Q., Kim, W., Li, Y., Morris, N., Yenilmez, E., Kong, J., Dai, H., Applied Physics Letters 79, 3155 (2001).Google Scholar
18. Delzeit, L., Nguyen, C. V., Stevens, R. M., Han, J., Meyyappan, M., Nanotechnology 13, 280 (2002).Google Scholar
19. Kong, J., Cassell, A. M., Dai, H., Chemical Physical Letters 292, 567 (1998).Google Scholar
20. Wei, Y. Y., Eres, G., Nanotechnology 11, 61 (2000).Google Scholar
21. Sarangi, D., Karimi, A., Nanotechnology 14, 109 (2003).Google Scholar
22. Kiang, C. H., Journal of Physical Chemistry A 104, 2454 (2000).Google Scholar
23. Wang, G. et al. Nanotechnology 13, L1 (2002).Google Scholar
24. Kiselev, N. A., Moravsky, A. P., Ormont, A. B., Zhakarov, D. N., Carbon 37, 1093 (1999).Google Scholar
25. Kichambare, P. D., Qian, D., Dickey, E. C., Grimes, C. A., Carbon 40, 1903 (2002).Google Scholar
26. Bruyunseraede, Y. et al. Physical Review Letters 76, 479 (1996).Google Scholar
27. Krupke, R., Hennrich, F., Lohneysen, H. P., Kappes, M. M., Science 301, 344 (2003).Google Scholar
28. Yamamoto, K., Akita, S., Nakayama, Y., Japanese Journal of Applied Physics 35, L917 (1996).Google Scholar
29. Williams, P. A., Papadakis, S. J., Falvo, M. R., Patel, A. M., Sinclair, M., Seeger, A., Helser, A., Taylor, R. M. II, Washburn, S., Superfine, R., Applied Physics Letters 80, 2574 (2002).Google Scholar
30. Dai, H., Kong, J., Zhou, C., Franklin, N., Tombler, T., Cassell, A., Fan, S., Chapline, M., Journal of Physical Chemistry B 103, 11246 (1999).Google Scholar
31. Li, Y., Kim, W., Zhang, Y., Rolandi, M., Wang, D., Dai, H., Journal of Physical Chemistry B 105, 11424 (2001).Google Scholar
32. Cheung, C. L., Kurtz, A., Park, H., Lieber, C. M., Journal of Physical Chemistry B 106, 2429 (2002).Google Scholar
33. Reuther, H., Dobler, M., Applied Physics Letters 69, 3176 (1996).Google Scholar
34. Gao, Y., Wong, S. P., Cheung, W. Y., Applied Physics Letters 83, 638 (2003).Google Scholar
35. In Handbook of Nanoscience, Engineering and Technology, edited by Goddard, W. A. III, Brenner, D. W., Lyshevski, S. E., Iafrate, G. J. (CRC Press, New York, 2003), p. 19–4.Google Scholar