Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:42:08.169Z Has data issue: false hasContentIssue false

Surface Morphology of LPE SiGe Layers Grown on (100) Si Substrates

Published online by Cambridge University Press:  10 February 2011

A. M. Sembian
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D – 70569 Stuttgart, Germany, [email protected]
I. Silier
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D – 70569 Stuttgart, Germany, [email protected]
K. Davies
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D – 70569 Stuttgart, Germany, [email protected]
A. Gutjahr
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D – 70569 Stuttgart, Germany, [email protected]
K. Lyutovich
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D – 70569 Stuttgart, Germany, [email protected]
M. Konuma
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D – 70569 Stuttgart, Germany, [email protected]
F. Banhart
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 1, D – 70569 Stuttgart, Germany
Get access

Abstract

We have investigated the surface morphology of thick SiGe layers grown on Si(100) substrates. SiGe layers containing different Ge concentrations (from 0 to 16 at.%) and having thickness of about 15μm are prepared by liquid phase epitaxy (LPE) method using various growth conditions. The wavelength of undulation of SiGe layers is found to be increasing when we adopt low cooling rates during LPE process. The roughness of the layer does not show any significant change with cooling rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Healy, S. A. and Green, M., Sol. Ener. Mater. Sol. Cells 28, p.273(1992).Google Scholar
2. Said, K., Poortmans, J., Libezny, M., Laureys, W., Nijs, J., Vyncke, D., Seifert, W., Kittler, M., Silier, I., and Konuma, M., to be published in Proc. 14th European Photovoltaic Solar Energy Conference, Barcelona, 1997.Google Scholar
3. Werner, J. H., Kolodinski, S., and Queisser, H. J., Phys. Rev. Lett. 72, p.3851 (1994).Google Scholar
4. Albrecht, M., Christiansen, S., Michler, J., Dorsch, W., Strunk, H. P., Hansson, P. O., and Bauser, E., Appl. Phys. Lett. 67, p.1234 (1995).Google Scholar
5. Pidduck, A. J., Robbins, D. J., Cullis, A. G., Leong, W. Y., and Pitt, A. M., Thin Soid Films 222, p.78 (1992).Google Scholar
6. Cullis, A. G., Robbins, D. J., Pidduck, A. J., and Smith, P.W., J. Cryst. Growth 123, p.333(1992).Google Scholar
7. Dutartre, D., Warren, P., Chollet, F., Gispert, F., Berenguer, M., and Berbezier, I., J. Cryst. Growth 142, p. 78 (1994).Google Scholar
8. Samavedam, S. B. and Fitzgerald, E. A., J. Appl. Phys. 81, p.3108 (1997).Google Scholar
9. Albrecht, M., Christiansen, S., Michler, J., Strunk, H.P., Hansson, P.O., and Bauser, E., J. Cryst. Growth 167, p.24 (1996).Google Scholar
10. Kimura, M., Tanaka, A., and Sukegawa, T., J. Cryst. Growth 99, p. 1295 (1990).Google Scholar
11. Trah, H. P., Dissertation, Stuttgart (1988).Google Scholar