Article contents
Surface morphology and structure of hydrogen etched 3C-SiC(001) on Si(001)
Published online by Cambridge University Press: 01 February 2011
Abstract
The surface of 3C-SiC(001) single-crystal epilayers grown on Si(001) substrates is well known to be inhomogeneous and defective. Therefore, the control and understanding at the atomic scale of 3C-SiC surfaces is a key issue. We study the effect of hydrogen etching at different temperatures on the morphology of 3C-SiC(001) surfaces by using Nomarksi optical microscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). As-grown 3C-SiC(001) samples have been hydrogen etched in a horizontal hot-wall chemical vapor deposition (CVD) reactor at atmospheric pressure for different times and temperatures. Flat, high-quality surfaces presenting defined atomic terraces were observed within the 3C-SiC grain boundaries after etching at 1200°C for 30 minutes. Higher etching temperatures resulted in surfaces with step bunching and enlarged surface defects. Samples etched under the best conditions have been studied using low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES).
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006
References
- 2
- Cited by