Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T08:33:01.052Z Has data issue: false hasContentIssue false

Surface Modification for Protein Resistance Using a Biomimetic Approach

Published online by Cambridge University Press:  15 February 2011

Jeffrey L. Dalsin
Affiliation:
Biomedical Engineering Department andInstitute for Bioengineering and Nanoscience in Advanced Medicine(IBNAM), Northwestern University, Evanston, IL 60208
Phillip B. Messersmith
Affiliation:
Biomedical Engineering Department andInstitute for Bioengineering and Nanoscience in Advanced Medicine(IBNAM), Northwestern University, Evanston, IL 60208
Get access

Abstract

In recent years the immobilization of poly(ethylene glycol) (PEG) on surfaces has proved to be one of the most attractive methods to prevent biological fouling of surfaces. We have developed a paradoxical biomimetic PEGylation strategy that exploits the adhesive characteristics of proteins secreted by marine mussels—one of nature's most notorious foulers. Linear PEGs were coupled to peptides containing 3,4-dihydroxyphenylalanine (DOPA), an unusual amino acid which is found in high concentration in these so-called mussel adhesive proteins. Using surface plasmon resonance, we have demonstrated enhanced resistance to protein adhesion on gold substrates modified with the DOPA-containing PEGs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Golander, C.-G., Herron, J. N., Lim, K., Claeson, P. & Stenius, P. A., J. D. in Poly(ethylene glycol) (Plenum Press, New York, 1992).Google Scholar
2. Harris, J. M., Zalipsky, S., American Chemical Society. Division of Polymer Chemistry. & American Chemical Society. Meeting. Poly(ethylene glycol): chemistry and biological applications (American Chemical Society, Washington, DC, 1997).Google Scholar
3. Waite, J. H. Annals of the New York Academy of Sciences 875, 301–9 (1999).Google Scholar
4. Waite, J. H. J. Biol. Chem. 258, 2911–15 (1983).Google Scholar
5. Taylor, S. W., Waite, J. H., Ross, M.M., Shabanowitz, J. & Hunt, D. F. JACS 116, 1080310804 (1994).Google Scholar
6. Yu, M., Hwang, J. & Deming, T. J. J. Am. Chem. Soc. 121, 58255826 (1999).Google Scholar
7. Pierpont, C. G. & Buchanan, R. M. Coordination Chemistry Reviews 38, 4587 (1981).Google Scholar
8. Kummert, R. & Stumm, W. Journal of Colloid and Interface Science 75, 373385 (1980).Google Scholar
9. McBride, M. B. Soil Science Society of America Journal 51, 14661472 (1987).Google Scholar
10. Soriaga, M. P. & Hubbard, A. T. JACS 104, 27352742 (1982).Google Scholar
11. Ooka, A. A. & Garrell, R. L. Biopolymers 57, 92102 (2000).Google Scholar
12. Dalsin, J. L., Lee, B. P., Hu, B. H. & Messersmith, P. B. JACS 125, 42534258 (2003).Google Scholar
13. Lee, B. P., Dalsin, J. L. & Messersmith, P. B. Biomacromolecules 3, 10381047 (2002).Google Scholar
14. Waite, J. H. & Benedict, C. V. Methods in Enzymology 107, 397413 (1984).Google Scholar
15. Hu, B. H. & Messersmith, P. B. Tetrahedron Letters 41, 57955798 (2000).Google Scholar
16. Kingshott, P., Thissen, H. & Griesser, H. J. Biomaterials 23, 20432056 (2002).Google Scholar
17. von der Haar, T. & McCarthy, J. E. G. Methods 29, 167174 (2003).Google Scholar
18. Peter, J. C., Briand, J. P. & Hoebeke, J. Journal of Immunological Methods 274, 149158 (2003).Google Scholar
19. Jung, L. S., Campbell, C. T., Chinowsky, T. M., Mar, M. N. & Yee, S. S. Langmuir 14, 56365648 (1998).Google Scholar
20. Lukosz, W. Biosensors and Bioelectronics 12, 175 (1997).Google Scholar
21. Fang, F. & Szleifer, I. Langmuir 18, 54975510 (2002).Google Scholar