Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T02:23:09.734Z Has data issue: false hasContentIssue false

Surface Modification and Ablation of Insulators Using a Tunable, Picosecond Mid-Infrared Laser

Published online by Cambridge University Press:  15 February 2011

R. F. Haglund Jr.
Affiliation:
Department of Physics and Astronomy and W. M. Keck Foundation Free-Electron Laser CenterVanderbilt University, Nashville TN 37235
D. R. Ermer
Affiliation:
Department of Physics and Astronomy and W. M. Keck Foundation Free-Electron Laser CenterVanderbilt University, Nashville TN 37235
A. H. Lines
Affiliation:
Department of Physics and Astronomy and W. M. Keck Foundation Free-Electron Laser CenterVanderbilt University, Nashville TN 37235
M. R. Papantonakis
Affiliation:
Department of Physics and Astronomy and W. M. Keck Foundation Free-Electron Laser CenterVanderbilt University, Nashville TN 37235
H. K. Park
Affiliation:
Department of Physics and Astronomy and W. M. Keck Foundation Free-Electron Laser CenterVanderbilt University, Nashville TN 37235
O. Yavas
Affiliation:
Department of Physics and Astronomy and W. M. Keck Foundation Free-Electron Laser CenterVanderbilt University, Nashville TN 37235
Get access

Abstract

Ultrashort-pulse lasers with fundamental wavelengths ranging from near-infrared to near-ultraviolet are increasingly being used for laser-induced surface modification of non-metallic solids. The relaxation of the initial electronic excitation into vibrational relaxation modes can produce efficient ablation and other desirable surface modifications with little collateral damage because the laser energy is deposited on a time scale much shorter than thermal diffusion times. Little is known, however, about how ultrashort pulses interact with insulators at wavelengths in the vibrational infrared. This paper describes surface modifications achieved by picosecond laser irradiation in the 2-10 lim range. The laser source was a tunable, free-electron laser (FEL) with I-ps micro-pulses spaced 350 ps apart in a macropulse lasting up to 4 μs, with an average power of up to 3 W. This unusual pulse structure makes possible novel tests of the influences vs fluence and intensity, as well as the effects of resonant vibrational excitation. As model materials systems, we studied calcium carbonate, its isoelectronic cousin sodium nitrate, and fused silica. Particularly intriguing are surface modifications achieved by tuning the laser into vibrational resonances and overtones of the target materials, or by tailoring the energy content of the pulse. The mechanisms underlying these effects, and their implications for materials-modification strategies, are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ashkenazi, D., Varel, H., Rosenfeld, A., Henz, S., Herrmann, J. and Campbell, E. E. B., Appl. Phys. Lett. 72, 1442 (1998).Google Scholar
Ashkenasi, D., Varel, H., Rosenfeld, A., Noack, F. and Campbell, E. E. B., Appl. Phys. A 63, 103 (1996).Google Scholar
Siegal, Y., Glezer, E. N., Huang, L. and Mazur, E., Ann. Rev. Mater. Sci. 25, 223 (1995).Google Scholar
Preuss, S., Späth, M., Zhang, Y. and Stuke, M., Appl. Phys. Lett. 63, 3049 (1993).Google Scholar
2. Madey, J. M. J., J. Appl. Phys. 42, 1906 (1971).Google Scholar
Brau, C. A., Science 239, 1115 (1989).Google Scholar
3. The physics of the FEL is described in detail in two recent textbooks: Marshall, Thomas C., Free-Electron Lasers (New York: Macmillan, 1985), and Charles A. Brau, Free-Electron Lasers (New York: Academic Press, 1990).Google Scholar
4. Deacon, D. A. G., Elias, L. R., Madey, J. M. J., Ramian, G. J., Schwettman, H. A., and Smith, T. I.: Phys. Rev. Lett. 38, 892 (1977)Google Scholar
5. Edwards, G. S., Evertson, D., Gabella, W., Grant, R., King, T. L., Kozub, J., Mendenhall, M., Shen, J., Shores, R., Storms, S. and Traeger, R. H., IEEE J. Sel. Topics in Quant. Electron. 2, 1077 (1996).Google Scholar
Brau, C. A. and Mendenhall, M. H.: Nucl. Inst. Meth. Phys. Res. A 331, ABS 4 (1993).Google Scholar
6. Becker, K., Johnson, J. B., and Edwards, G.: Rev. Sci. Inst. 65, 1496 (1994)Google Scholar
7. Complex Cleanup: The Environmental Legacy of Nuclear Weapons Production, 1991. OTA-O-484 U. S. Congress Office of Technology Assessment, (U. S. Government Printing Office, Washington, DC).Google Scholar
8. Pfleiderer, C., Leclerc, N., and Greulich, K.-O., J. Non-Cryst. Solids. 159, 145153 (1993).Google Scholar
9. Braren, B. and Srinivasan, R., J. Vac.Sci. Technol. B 6, 537541 (1988).Google Scholar
10. Rothschild, M., Ehrlich, D. J., and Shaver, D. C., Appl. Phys. Lett. 55, 12761278 (1989).Google Scholar
11. Ihlemann, J., Wolff, B., and Simon, P., Appl. Phys. A 54, 363368 (1992).Google Scholar
12. Sugioka, K., Wada, S., Tashiro, H., Toyoda, K., and Nakamura, A., Appl. Phys. Lett. 65, 15101512 (1994).Google Scholar
13. Slaoui, A., Fogarassy, E., Fuchs, C., and Siffert, P., J. Appl. Phys. 71, 590596 (1992).Google Scholar
14. Haglund, R. F. Jr., “Mechanisms of Laser-Induced Desorption and Ablation,” Chapter 2 in Laser Desorption and Ablation, eds. Miller, John C. and Haglund, R. F. Jr. (Boston: Academic Press, 1998).Google Scholar
15. Mao, X. L., Shannon, M. A., Fernandez, A. J., and Russo, R. E., Appl. Spectrosc. 49, 10541062 (1995).Google Scholar
16. Reader, J. and Corliss, C. H., Wavelengths and Transition Probabilities for Atoms and Atomic Ions (National Bureau of Standards, Washington, 1980).Google Scholar
17. Lide, D. R., CRC Handbook of Chemistry and Physics, 74th ed., (CRC Press, Boca Raton, 1994).Google Scholar
18. El-Astal, A. H., Ikram, S., Morrow, T., Graham, W. G., and Walmsley, D. G., J. Appl. Phys. 77, 65726580 (1995).Google Scholar
19. Pearse, R. W. B. and Gaydon, A. G., Identification of Molecular Spectra (John Wiley and Sons, New York, 1976).Google Scholar
20. Yavas, O., Papantonakis, M. R., Maddocks, E. L. and Haglund, R. F. Jr., Appl. Surf. Sci., to be published.Google Scholar
21. Yavas, O., Park, H. K. and Haglund, R. F. Jr., unpublished.Google Scholar
22. Bäuerle, Dieter, Laser Processing and Chemistry, 2nd Edition (Berlin: Springer-Verlag, 1996), Ch. 28.Google Scholar
23. Yavas, O., Maddocks, E. L., Papantonakis, M. R. and Haglund, R. F. Jr., Appl. Phys. Lett. 71, 1287 (1997).Google Scholar
24. Park, H. K. and Haglund, R. F. Jr., Appl. Phys. A 64, 431 (1997).Google Scholar
25. Stuart, B. C., Feit, M. D., Rubenchik, A. M., Shore, B. W., and Perry, M. D.: Phys. Rev. Lett. 74, 2248 (1995).Google Scholar
Stuart, B. C., Feit, M. D., Herman, S., Rubenchik, A. M., Shore, B. W. and Perry, M. D., Phys. Rev. B 53, 1749 (1996).Google Scholar
26. Ball, Z. and Sauerbrey, R., “Surface Modification with Lasers,” Chapter 7, in Laser Desorption and Ablation, eds. John Miller, C. and Haglund, R. F. Jr. (Boston: Academic Press, 1998).Google Scholar
27. See, for example, Laser Desorption and Ablation, eds. Miller, John C. and Haglund, R. F. Jr. (Boston: Academic Press, 1998).Google Scholar