Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:38:12.809Z Has data issue: false hasContentIssue false

Surface Instability and Associated Roughness of Pendeo-epitaxy GaN (0001) Films Grown via Metalorganic Vapor Phase Epitaxy

Published online by Cambridge University Press:  21 March 2011

Amy M. Roskowski
Affiliation:
Department of Chemical Engineering, North Carolina State University Raleigh, NC 27695
Peter Q. Miraglia
Affiliation:
Department of Materials Science and Engineering, North Carolina State University Raleigh, NC 27695
Edward A. Preble
Affiliation:
Department of Materials Science and Engineering, North Carolina State University Raleigh, NC 27695
Sven Einfeldt
Affiliation:
On Postdoctoral leave from the Institute of Solid State Physics, University of Bremen
Robert F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University Raleigh, NC 27695
Get access

Abstract

A growth process route that results in thin film GaN templates with a smooth surface morphology at the optimum temperature of 1020°C has been developed. Atomic force microscopy (AFM) reveals hillocks on films grown above 1020°C. Hillocks resulted from the rotation of heterogeneous steps formed at pure screw or mixed dislocations which terminated on the (0001) surface. Growth of the latter feature was controlled kinetically by temperature through adatom diffusion. The 106 cm-2 density of the hillocks was reduced through growth on thick GaN templates and regions of pendeo-epitaxy (PE) overgrowth with lower pure screw or mixed dislocations. Smooth PE surfaces were obtained at temperatures that reduced the lateral to vertical growth rate but also retarded hillock growth that originated in the stripe regions. The (1120 ) PE sidewall surface was atomically smooth, with a root mean square roughness value of 0.17 nm which was the noise limited resolution of the AFM measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nam, O. H., Bremser, M. D., Zheleva, T. S., and Davis, R. F., Appl. Phys. Lett. 71 (1997) 2638.10.1063/1.120164Google Scholar
[2] Marchand, H., Wu, X.H., Ibbetson, J.P., Fini, P.T., Kozodoy, P., Keller, S., Speck, J.S., DenBaars, S.P., and Mishra, U. K., Appl. Phys. Lett. 73 (1998) 747.Google Scholar
[3] Zheleva, T., Nam, O.H., Bremser, M.D., and Davis, R. F., Appl. Phys. Lett. 71 (1997) 2472.Google Scholar
[4] Zheleva, T., Smith, S., Thomson, D., and Linthicum, K., J. Electron. Mater. 28 (1999) L5.10.1007/s11664-999-0239-zGoogle Scholar
[5] Linthicum, K., Gehrke, T., Thomson, D., Carlson, E., Rajagopal, P., Smith, T., Batchelor, D., and Davis, R. F., Appl. Phys. Lett. 75 (1999) 196.Google Scholar
[6] Davis, R. F., Gehrke, T., Linthicum, K.J., Zheleva, T.S., Preble, E.A., Rajagopal, P., Zorman, C.A., and Mehregany, M., J. Cryst. Growth 225 (2001) 134.Google Scholar
[7] Venables, J. A., “Regimes of Condensation,” in Surface and Thin Film Processes. New York: Cambridge University Press, 2000, pp. 161.Google Scholar
[8] Burton, W. K., Cabrera, N., and Frank, F. C., Philos. Trans. R. Soc. London, Ser. A 243 (1951) 299.Google Scholar
[9] Zauner, A., Weyher, J. L., Plomp, M., Kirilyuk, V., Grzegory, I., Enckevort, W. J. P. v., Schermer, J. J., Hageman, P. R., and Larsen, P. K., J. Cryst. Growth 210 (2000) 435.Google Scholar
[10] Merlin, V., Duc, T. M., Younes, G., Monteil, Y., Souliere, V., and Regreny, P., J. Appl. Phys. 78 (1995) 5048.Google Scholar
[11] Quian, W., Rohrer, G.S., Skowronksi, M., Doverspike, K., Rowland, L.B., and Gaskill, D. K., Appl. Phys. Lett. 67 (1995) 2284.Google Scholar
[12] Keller, S., Mishra, U. K., DenBaars, S. P., and Seifert, W., Jap. J. Appl. Phys. 37 (1998) L431.Google Scholar
[13] Heying, B., Tarsa, E. J., Elsass, C. R., Fini, P., DenBaars, S. P., and Speck, J. S., J. Appl. Phys. 85 (1999) 6470.Google Scholar
[14] Smith, A. R., Feenstra, R.M., Greve, D.W., Neugebauer, J., and Northrup, J. E., Phys. Rev. Lett. 79 (1997) 3394.Google Scholar
[15] Nakamura, M., Katsura, S., Makino, N., Ikeda, E., Suga, K., and Hirano, R., J. Cryst. Growth 129 (1993) 456.Google Scholar
[16] Johnson, E. S. and Legg, G. E., J. Cryst. Growth 88 (1998) 53.10.1016/S0022-0248(98)90007-0Google Scholar