Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:20:58.521Z Has data issue: false hasContentIssue false

Surface Functionalization of Polylactic Film with N-vinylcaprolactam using Photoinduction Process

Published online by Cambridge University Press:  31 January 2011

Mario H. Gutiérrez-Villarreal*
Affiliation:
Departamento de Procesos de Transformación de Plásticos, Centro de Investigación en Química Aplicada. Blvd. Enrique Reyna Hermosillo #140, Col. Saltillo 400, C.P. 25253, Saltillo, Coahuila, México.
J. Gustavo Guzmán-Moreno
Affiliation:
Departamento de Procesos de Transformación de Plásticos, Centro de Investigación en Química Aplicada. Blvd. Enrique Reyna Hermosillo #140, Col. Saltillo 400, C.P. 25253, Saltillo, Coahuila, México.
Get access

Abstract

A versatile and non destructive technique for a chemical modification by grafting N-vinylcaprolactam (VCL) monomer on the polylactic (PLA) film surface is described. The film substrate is treated with a VCL solution, hexane and benzophenone (BP), the latest promotes the photo initiation. Grafting percentage is derived by a gravimetric method and the success in grafting is evaluated by contact angle technique, UV and ATR-FTIR analysis. The influence of the photoinitiator concentration is evaluated by the polymerization rate (Cp), grafting percentage (Cg) and grafting efficiency (Eg). The modified surface shows higher level of humectation or hydrophilicity, confirming successful surface functionalization of the polylactic acid film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.- Chang Min, X.; Jian Ping, D. and Wan Tai, Y. Macromol Chem. Phys. (206) 11061113 (2005).Google Scholar
2.- Garbassi, F.; Morra, M. and Occhiello, E. Polymer Surfaces: From Physics To Technology. John Wiley & Sons. New York. (1988).Google Scholar
3.- Gutiérrez Mario, H. J. Appl. Polym. Sci. (110) 163169 (2008).Google Scholar
4.- Källrot, M.; Edlund, U. and Albertsson, A.-C. Biomacromol. (8) 24922496 (2007).Google Scholar
5.- Kudryavtsev Val., N,; Kabanov V., Ya.; Yamul, N. A. and Kedik S. A., High 7.- Energ. Chem. (37) 430435 (2003).Google Scholar
6.- Lunt J., Polym. Degrad. Stab. (59) 145152 (1998).Google Scholar
7.- Ma, H.; Davis, R. H. and Bowman, C. N. Macromol. (33) 331335 (2000).Google Scholar
8.- Mehta, R.; Kumar, V.; Bhunia, H. and Upadhyay, N. S. J. Macromol. Sci., Part C: Polym. Rev. (45) 325349 (2005).Google Scholar
9.- Emad, Yousif, Ayad, Hameed, Adel, Kamil, Yang, Farina, 1 1 1 2 1Noora Asaad and 1Abdualbasit GraisaAustralian Journal of Basic and Applied Sciences, 3(3): 17861794, (2009)Google Scholar