No CrossRef data available.
Published online by Cambridge University Press: 04 February 2011
The effect of energetic oxygen bombardment of the TiO2 rutile {110} surface is studied by means of molecular dynamics simulations using a variable charge potential. A random selection of O atoms and O2 molecules are incident successively and normally onto the surface. At an energy of 5 eV the surface becomes saturated with oxygen until covered with between 1 and 2 monolayers of adatoms. As the fluence further increases Ti atoms are pulled out from the bulk and become surrounded by the O atoms forming well-defined atomic clusters on the surface which then desorb. At bombardment energies of 400 eV, the O atoms penetrate into the bulk and voids form whose surfaces are decorated with oxygen atoms. As the O fluence further increases the surface is sputtered and the voids then intersect the surface forming a very rough topography.