Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:22:40.475Z Has data issue: false hasContentIssue false

Surface Enhanced Raman Scattering on Physically Self-assembled Ag Nanorod Arrays

Published online by Cambridge University Press:  01 February 2011

Motofumi Suzuki
Affiliation:
[email protected], Kyoto University, Department of Micro Engineering, Yoshida Honmachi, Sakyo, Kyoto, Kyoto, 606-8501, Japan, +81-75-753-5196, +81-75-753-5196
Wataru Maekita
Affiliation:
[email protected], Kyoto University, Department of Micro Engineering, Japan
Yoshinori Wada
Affiliation:
[email protected], Kyoto University, Department of Micro Engineering, Japan
Kaoru Nakajima
Affiliation:
[email protected], Kyoto University, Department of Micro Engineering, Japan
Kenji Kimura
Affiliation:
[email protected], Kyoto University, Department of Micro Engineering, Japan
Takao Fukuoka
Affiliation:
[email protected], Kyoto CREATE, JST, Japan
Yasushige Mori
Affiliation:
[email protected], Doshisha University, Department of Chemical Engineering and Materials Science
Get access

Abstract

We have established a process to fabricate Ag nanorod arrays with tunable morphology, hence tunable plasmonic properties. Based on a dynamic oblique deposition (DOD) technique, the nanorods are aligned in a way where their major axis is quasi-parallel. The aspect ratio of the nanorods is adjusted by choosing an appropriate DOD condition to show plasma resonance in the wavelength region around the Raman scattering at the excitation wavelength of 785 nm. The nanorod arrays thus tuned provide intense surface enhanced Raman scattering useful for practical applications to biochemical sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Haynes, C. L., Yonzon, C. R., Zhang, X. Y., and Duyne, R. P. Van, J. Raman Spectrosc. 36, 471 (2005).Google Scholar
[2] John Krug, T. II, Sánchez, Erik J., and Xiea, X. Sunney, J. Chem. Phys. 16, 10895 (2002).Google Scholar
[3] Liao, P. F., Bergman, J. G., Chemla, D. S., Wokaun, A., Melngailis, J., Hawryluk, A. M., and Economou, N. P., Chem. Phys. Lett 82, 355 (1981).Google Scholar
[4] Martínes, J. L., Gao, Y., and López-Ríos, T. and Wirgin, A., Phys. Rev. B 35, 9481 (1987).Google Scholar
[5] Nikoobakht, B., Wang, J., and El-Sayed, M. A., Chem. Phys. Lett. 366, 17 (2002).Google Scholar
[6] Inoue, M. and Ohtaka, K., J. Phys. Soc. Jpn. 52, 3853 (1983).Google Scholar
[7] Lu, T. M., Ye, D. X., Karabacak, T., and Wang, G. C., Mater. Res. Soc. Symp. Proc. 849, 13 (2005).Google Scholar
[8] Suzuki, M., Maekita, W., Kishimoto, K., Teramura, S., Nakajima, K., Kimura, K., and Taga, Y., Jpn. J. Appl. Phys. 44, L193 (2005).Google Scholar
[9] Suzuki, M., Wada, Y., Maekita, W., Nakajima, K., Kimura, K., Fukuoka, T., and Mori, Y., e-J. Surf. Sci. Nanotech. 3, 280 (2005).Google Scholar
[10] Hulst, H. C. van de, Light scattering by small particles (Dover, New York, 1981).Google Scholar
[11] Bohren, C. F. and Huffman, D. R., Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
[12] Joo, S.-W., Vibrational Spectroscopy 34, 269 (2004).Google Scholar
[13] Haynes, C. L. and Duyne, R. P. Van, J. Phys. Chem. B 107, 7426 (2003).Google Scholar