Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-10-06T00:30:28.005Z Has data issue: false hasContentIssue false

Surface Effects on the Magnetic Behavior of Nanocrystalline Nickel Ferrites: The Effect of Surface Roughness and Dilution

Published online by Cambridge University Press:  01 February 2011

H. Nathani
Affiliation:
Center for Structural and Functional Materials Department of Chemical Engineering, University of Louisiana at LafayetteP.O. Box 44130, Lafayette, LA 70504-4130, USA
R.D.K. Misra
Affiliation:
Center for Structural and Functional Materials Department of Chemical Engineering, University of Louisiana at LafayetteP.O. Box 44130, Lafayette, LA 70504-4130, USA
W.F. Egelhoff Jr
Affiliation:
Magnetic Materials Division, National Institute of Standards and Technology Gaithersburg, MD 20899, USA
Get access

Abstract

The paper describes the surface roughness and dilution effects on the magnetic behavior of nanocrystalline nickel ferrites studied by SQUID magnetometer. Two different kinds of measurements were performed: (a) zero-field cooling (ZFC) and field cooling (FC) magnetization versus temperature and (b) magnetization as a function of the applied field. The analysis of magnetic measurements indicate that while the superparamagnetic behavior is retained by nanocrystalline ferrites of different surface roughness (0.8-1.8 nm) at 300K, the hysteresis loop at 2K becomes non-squared and the coercivity increases with increase in surface roughness. This behavior is discussed in terms of broken bonds and degree of surface spin disorder. In diluted dispersion systems containing 10-40% nickel ferrite in a polyethylene matrix, the interparticle attractions continue to be dominant even when the concentration of nickel ferrite is 10 wt.% in the diluted system. The general magnetic behavior of diluted dispersion system is similar to the undiluted system; however, coercivity, remanence, and saturation magnetization are altered. These changes in the magnetic data are ascribed to magnetization interactions that encourage flux closure configuration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Misra, R.D.K., Gubbala, S., Kale, A., and Egelhoff, W.F., Mater. Sci. Eng. B. 111 (2004) 164.Google Scholar
2. Sato, T., Haneda, K., Seki, M., and Ijima, T., Appl. Phys. A 50 (1990) 139.Google Scholar
3. Kodama, R.H., J. Magn. Magn. Mater. 200 (1999) 359.Google Scholar
4. Berkowitz, A.E., Kodama, R.H., Makhlouf, S.A., Parker, F.T., Spada, F.E., McNiff, E.J. Jr , and Foner, S., J. Magn. Magn. Mater. 196 (1999) 591.Google Scholar
5. Chudnovsky, E.M. and Gunther, L., Phy. Rev. Lett. 60 (1988) 661.Google Scholar
6. Parker, F.T., Spada, F.F., Cox, T.J., and Berkowitz, A.E., J. Magn. Magn. Mater. 162 (1996) 122.Google Scholar
7. Perkins, S.S., More, N., and Roche, K.P., Phys. Rev. Lett. 64 (1990) 2304.Google Scholar
8. Kim, D.K., Voit, W., Zapka, W., Bjelk, B., Muhammed, M., and Rao, K.V., Mater. Res. Soc. Symp. Proc. 676 (2001) 321.Google Scholar
9. Fannin, P.C., Slawska-Waniewska, A., Didukh, P., Giannitoics, A., and Charles, S.W., The Eur. Phys. J. Appl. Phys. 17 (2002) 3.Google Scholar
10. Sousa, M.H., Tourinko, F.A., Depeyrot, J., Silva, G.J. Da, and Lara, M.C.F., J. Phys. Chem. B 105 (2001) 1169.Google Scholar
11. McHenry, M.E. and Loughin, D.E., Acta Mater. 48 (2000) 223.Google Scholar
12. Swaminathan, R., Henry, M.E., Calvin, S., Sorescu, M., and Diamandescu, L., Proc. Inter. Conf. on Ferrites, American Ceramic Society, 2005, p. 847.Google Scholar
13. Swaminathan, R., Henry, M.E., Poddar, P. and Srikanth, H., J Appl. Phys. 97 (2005), in press.Google Scholar
14. Clark, T.M. and Evans, B., IEEE Trans. Magn. 33 (1997) 3745.Google Scholar
15. Martinez, B., Obradors, X., Balcells, L., Rouanet, A., and Monty, C., Phys. Rev. Lett. 80 (1998) 181.Google Scholar
16. Kodama, R.H., Berkowitz, A.E., McNiff, E.J., and Foner, S., J. Appl. Phys. 81 (1997) 5552.Google Scholar
17. Smit, J. and Wijn, H. P. J., “Ferrites – Physical Properties of Ferromagnetic Oxides in Relation to their Technical Applications”, John Wiley and Sons, New York (1959).Google Scholar
18. Kodama, R.H., Berkowitz, A.E., McNiff, E.J., and Foner, S., Phys. Rev. Lett. 77 (1996) 394.Google Scholar
19. Kodama, R.H., Berkowitz, A.E., McNiff, E.J., and Foner, S, J. Appl. Phys. 81 (1997) 5552.Google Scholar
20. Chantrell, R.W., Coverdale, G.N., Hilo, M. El., and Grady, K.O., J. Magn. Magn. Mater. 157-158 (1996) 250.Google Scholar
21. Morup, S., Tronc, E., Phys. Rev. Lett. 72 (1994) 3278.Google Scholar
22. Morup, S., Hyperfine Interact. 60 (1990) 959.Google Scholar
23. Morup, S., J. Magn. Magn. Mater. 40 (1983) 163.Google Scholar