Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T02:42:16.828Z Has data issue: false hasContentIssue false

Surface Diffusion of Large Ag Clusters on Ag(100)

Published online by Cambridge University Press:  21 February 2011

J.-M. Wen
Affiliation:
Departments of Chemistry and Mathematics and Ames Laboratory, Iowa State University, Ames, LA 50011 USA
J. W. Evans
Affiliation:
Departments of Chemistry and Mathematics and Ames Laboratory, Iowa State University, Ames, LA 50011 USA
S.-L. Chang
Affiliation:
Departments of Chemistry and Mathematics and Ames Laboratory, Iowa State University, Ames, LA 50011 USA
J. W. Burnett
Affiliation:
Departments of Chemistry and Mathematics and Ames Laboratory, Iowa State University, Ames, LA 50011 USA
P. A. Thiel
Affiliation:
Departments of Chemistry and Mathematics and Ames Laboratory, Iowa State University, Ames, LA 50011 USA
Get access

Abstract

Scanning tunneling microscopy has shown that large, two-dimensional Ag clusters undergo observable diffusion on Ag(100). The variation of the diffusion coefficient with cluster size in the range studied, 100 to 540 atoms per cluster, indicates that two-dimensional evaporation-condensation is the main mechanism of cluster diffusion. The experimental data consistently show evidence for a backward-correlation in the cluster motion. The meaning and origin of this correlation is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ernst, H.-J., Fabre, F. and Lapujoulade, J., Phys. Rev. Lett. 69, 458 (1992).Google Scholar
2. Stoyanov, S. and Kashchiev, D., in Current Topics in Materials Science, 7, Ed. by Kaldis, E. (North Holland, Amsterdam, 1981) 71; and references therein.Google Scholar
3. Wen, J.-M., Chang, S.-L., Evans, J. W. and Thiel, P. A., in preparation (1995).Google Scholar
4. Chang, S.-L. and Thiel, P. A., CRC Crit. Rev. in Surface Chemistry 3, 239 (1994).Google Scholar
5. Fink, H.-W. and Ehrlich, G., Surf. Sci. 150, 419 (1985).Google Scholar
6. Wang, S. C. and Ehrlich, G., Surface Sci. 239, 301 (1990).Google Scholar
7. Kellogg, G. L., Phys. Rev. Lett. 73, 1833 (1994).Google Scholar
8. Liu, C.-L. and Adams, J. B., Surf. Sci. 268, 73 (1992).Google Scholar
9. Rao, M., Kalos, M. H., Lebowitz, J. L. and Marro, J., Phys. Rev. B 13, 4328 (1976).Google Scholar
10. Binder, K. and Kalos, M. H., Statistical, J. Physics 22, 363 (1980).Google Scholar
11. Voter, A. F., Phys. Rev. B34, 6819 (1986).Google Scholar
12. Voter, A. F., SPIE Modeling of Optical Thin Films 821, 214 (1987).Google Scholar
13. Kang, H. C., Thiel, P. A. and Evans, J. W., J. Chem. Phys. 93, 9018 (1990); also inGoogle Scholar
The Structure of Surfaces III, Ed. by Tong, S. Y., et al., (Springer, Berlin, 1991) p. 55.Google Scholar
14. Soler, J. M., Phys. Rev. B 50, 5578 (1994).Google Scholar
15. Wen, J.-M., Burnett, J. W., Chang, S.-L., Evans, J. W. and Thiel, P. A., Phys. Rev. Lett. 73, 2591 (1994).Google Scholar
16. Barber, M. N. and Ninham, B. W., Random and Restricted Walks (Gordon and Breach, New York, 1970).Google Scholar
17. It is clear that tc is determined by both the temporal correlation range <m>=ƒ1 mA(m)dm/ƒ1 A(m)dm, and the correlation amplitude, ƒ1 I A(m) I dm.=ƒ1+∞+mA(m)dm/ƒ1+∞+A(m)dm,+and+the+correlation+amplitude,+ƒ1+∞+I+A(m)+I+dm.>Google Scholar