Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:24:45.590Z Has data issue: false hasContentIssue false

Surface Diffusion of a Cation Adatom on a GaAs(001)-(2×4) Surface

Published online by Cambridge University Press:  21 February 2011

Takahisa Ohno
Affiliation:
NTT LSI Laboratories, Atsugi-shi, Kanagawa 243-01, Japan
Kenji Shiraishi
Affiliation:
NTT Basic Research Laboratories, Atsugi-shi, Kanagawa 243-01, Japan
Tomonori Ito
Affiliation:
NTT LSI Laboratories, Atsugi-shi, Kanagawa 243-01, Japan
Get access

Abstract

We report the first parameter-free calculations of surface diffusion of a cation adatom on a reconstructed As-stabilized GaAs(001)-(2×4) surface. It is found from the calculated migration potentials of cation adatoms that the long-bridge sites are the most favorable adsorption sites on the GaAs(001)-(2×4) surfaces at low adatom coverages. The calculated results for surface diffusion constants of Ga adatoms show that the Ga-adatom diffusion is anisotropic on the reconstructed GaAs(001) surfaces and that the direction of fast diffusion is parallel to the As-missing dimer rows. The Al-adatom diffusion exhibits anisotropy similar to that of the Ga-adatom diffusion, while Al adatoms diffuse several times more slowly than Ga adatoms in the same directions in spite of the lighter mass of Al. Incorporating the calculated results for diffusion constants and migration potentials, the dynamical behavior of cation adatoms on the GaAs(00l) surface are demonstrated by stochastic Monte Carlo simulations at finite temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Horikoshi, Y., Kawashima, M., and Yamaguchi, H., Jpn. J. Appl. Phys. 25, L868 (1986).Google Scholar
2 Neave, J. H., Dobson, P. J., Joyce, B. A., and Zhang, J., Appl. Phys. Lett. 47, 100 (1985).Google Scholar
3 Van Hove, J. M. and Cohen, P. I., J. Crystal Growth 81, 13 (1987).Google Scholar
4 Nishinaga, T., Shitara, T., Mochizuki, K., and Cho, K. I., J. Crystal Growth 99, 482 (1990).Google Scholar
5 Ohta, K., Kojima, T., and Nakagawa, T., J. Crystal Growth 95, 71 (1989).Google Scholar
6 Blöchl, P. E., Van de Walle, C. G., and Pantelides, S. T., Phys. Rev. Lett. 64, 1401 (1990).Google Scholar
7 Vineyard, G., J. Phys. Chem. Solids 3, 121 (1957).Google Scholar
8 Teter, M. P., Payne, M. C., and Allan, D. C., Phys. Rev. B. 40, 12255 (1989).Google Scholar
9 Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
10 Ohno, T., Phys. Rev. Lett. 70, 631 (1993).Google Scholar
11 Falta, J., Tromp, R. M., Copel, M., Pettit, G. D., and Kirchner, P. D., Phys. Rev. Lett, 69, 3068 (1992).Google Scholar
12 Shiraishi, K., Ito, T., and Ohno, T., Proc. 6th Int. Conf. Modulated Semicond. Structures, Garmisch-Partenkirchen 1993 (Solid State Electron) in press.Google Scholar
13 Ito, T., Ohno, T., and Shiraishi, K., Proc. 21st Int. Conf. Phys. Semicond., Beijing 1992 (World Scientific Publishing, Singapore) p.550.Google Scholar