Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:48:06.977Z Has data issue: false hasContentIssue false

A Surface Diffusion Model for Nanotube Growth

Published online by Cambridge University Press:  10 February 2011

Oleg A. Louchev
Affiliation:
Center for Advanced Materials, National Institute for Research in Inorganic Materials 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Yoichiro Sato
Affiliation:
Center for Advanced Materials, National Institute for Research in Inorganic Materials 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Get access

Abstract

The problem of nanotube growth macrokinetics is viewed within the framework of the continuum surface diffusion equation combined with step-flow growth kinetics. The differences in incorporation rates of adatoms approaching the growth steps from “upper” or lower" terraces are taken into account. These differences can lead to the onset of surface island nucleation in front of a propagating step. This effect is able to cause formation of defects in the growing layer and even to inhibit stable step-flow modes of nanotube growth. The segregation effect of a second phase (BN) in front of the propagating of C layer step is considered, suggesting that it may cause increase in BN concentration and nucleation of islands leading to BN inclusions in C layers or the propagation of a BN layer over C layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Iijima, S., Nature 354, 56 (1991).Google Scholar
[2] Ebbesen, T. W. and Ajayan, P. M.. Nature 358, 220 (1992).Google Scholar
[3] Iijima, S., Ajayan, P. M. and Ichihashi, T., Phys. Rev. Lett. 69, 3100 (1992).Google Scholar
[4] Iijima, S., Materials Science and Engineering B19, 172 (1993).Google Scholar
[5] Amelinckx, D. Bernaerts, Zhang, X. B., Tendeloo, G. Van and Landuyt, J. Van. Science 267,1334(1995).Google Scholar
[6] Ajayan, P. M., Prog. Crystal Growth and Charact. 38, 37 (1997).Google Scholar
[7] Lee, Y. H., Kim, S. G. and Tomanek, D., Phys. Rev. Lett. 78, 2393 (1997).Google Scholar
[8] Charlier, J.-C., Vita, A. De, Blase, X. and Car, R.. Science 275, 646 (1997); X. Blase, A. De Vita, J.-C. Charlier and R. Car. Phys. Rev. Lett. 80, 1666 (1998).Google Scholar
[9] Maiti, A., Brabec, C. J., Roland, C. M. and Bernholc, J., Phys. Rev.B 52, 14850 (1995); A. Maiti, C. J. Brabec and J. Bernholc. Phys. Rev. B 55, 6097 (1997).Google Scholar
[10] Louchev, O. A.. Appl. Phys. Lett. 71, 3522 (1997).Google Scholar
[11] Louchev, O. A. and Sato, Y., Appl. Phys. Lett. 74. 194 (1999)Google Scholar
[12] Okuyama, F. and Ogasawara, I.. Appl. Phys. Lett. 71, 623 (1997).Google Scholar
[13] Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H., Willaime, F., Science 278, 653 (1997).Google Scholar
[14] Suenaga, K., Willaime, F., Loiseau, A., Colliex, C., Appl. Phys. A 68, 301 (1999).Google Scholar