Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:30:08.870Z Has data issue: false hasContentIssue false

Surface defects on MgO thin films: Their detection using metastable impact electron spectroscopy and interaction with probe molecules

Published online by Cambridge University Press:  17 March 2011

Jeffrey A. Stultz
Affiliation:
Texas A&M University College Station, Texas 77842, U.S.A
Andrei Kolmakov
Affiliation:
Texas A&M University College Station, Texas 77842, U.S.A
Young Dok Kim
Affiliation:
Texas A&M University College Station, Texas 77842, U.S.A
D. Wayne Goodman
Affiliation:
Texas A&M University College Station, Texas 77842, U.S.A
Get access

Abstract

MgO thin films having different defect densities are explored in this study using metastable impact electron spectroscopy (MIES), ultraviolet photoelectron spectroscopy (UPS), temperature programmed desorption (TPD), and scanning tunneling microscopy (STM). Surface point defects on MgO exhibit themselves in both the MIES and UPS spectra as a feature approximately 2 eV above the valance band, whereas extended defects are only observed spectroscopically as a broadening of the O 2p band. The interaction of NO and N2O with the MgO surface as a function of surface defect density is explored. Upon adsorption on MgO thin films at 100K, both NO and N2O show the development of three features which coincide with a standard gas phase N2O spectrum. The saturation coverage of N2O from NO adsorption increases with increasing defect density, indicating that defect sites are mainly responsible for N2O formation. STM images confirm the increase of thin film defect density upon thermal quenching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Henrich, V. E., Cox, P. A., The Surface Science of Metal Oxides, (Cambridge University Press, Cambridge, 1994).Google Scholar
2. Street, S. C., Xu, C., and Goodman, D. W.. Annu.Rev.Phys.Chem. 48, 43 (1997).Google Scholar
3. Goodman, D. W.. Chem.Rev. 95, 523 (1995).Google Scholar
4. He, J. W., and Moller, P. J.. Chem.Phys.Lett. 129, 13 (1986).Google Scholar
5. Underhill, P. R., and Gallon, T. E.. Solid State Commun. 43, 9 (1982).Google Scholar
6. Henrich, V. E., and Kurtz, R.L. J.Vac.Sci.Technol.A. 18, 416 (1981).Google Scholar
7. Peterka, D., Tegenkamp, C., Schroder, K. M., Ernst, W., and Pfnur, H.. Surf.Sci. 431, 146 (1999).Google Scholar
8. Wu, M. C., Truong, C. M., and Goodman, D. W.. Phys.Rev.B: Condens.Matter 46, 12688 (1992).Google Scholar
9. Giamello, E., Ferrero, A., Coluccia, S., and Zecchina, A.. J.Phys.Chem. 95, 9385 (1991).Google Scholar
10. Chen, Y., Tohver, T., Narayan, J., and Abraham, M. M.. Phys.Rev.B 16, 5535 (1979).Google Scholar
11. Harada, Y., Masuda, S., and Ozaki, H.. Chem.Rev. 97, 1897 (1997).Google Scholar
12. Gunster, J., Liu, G., Stultz, J., and Goodman, D. W.. J.Chem.Phys. 110, 2558 (1999).Google Scholar
13. Corneille, J. S., He, J. W., and Goodman, D. W.. Surf.Sci. 306, 269 (1994).Google Scholar
14. Cox, P. A., and Williams, A. A.. Surf.Sci. 175, L782–L786 (1986).Google Scholar
15. Kantorovich, L. N., Shluger, A. L., Sushko, P. V., and Stoneham, A. M.. Surf.Sci. 444, 31 (2000).Google Scholar
16. Ochs, D., MausFriedrichs, W., Brause, M., Gunster, J., Kempter, V., Puchin, V., Shluger, A., and Kantorovich, L.. Surf.Sci. 365, 557 (1996).Google Scholar
17. Tjeng, L. H., Vos, A. R., and Sawatzky, G. A.. Surf.Sci. 235, 269 (1990).Google Scholar
18. MausFriedrichs, W., Wehrhahn, M., Dieckhoff, S., and Kempter, V.. Surf.Sci. 237, 257 (1990).Google Scholar
19. MausFriedrichs, W., Dieckhoff, S., and Kempter, V.. Surf.Sci. 249, 149 (1991).Google Scholar
20. Ochs, D., Brause, M., Stracke, P., Krischok, S., Wiegershaus, F., MausFriedrichs, W., Kempter, V., Puchin, V. E., and Shluger, A. L.. Surf.Sci. 383, 162 (1997).Google Scholar
21. Kantorovich, L. N., Holender, J. M., and Gillan, M. J.. Surf.Sci. 343, 221 (1995).Google Scholar
22. Gotoh, T., Fukunaga, Y., and Takagi, S.. Surf.Sci. 358, 690 (1996).Google Scholar
23. Wichtendahl, R., Rodriguez-Rodrigo, M., Hartel, U., Kuhlenbeck, H., and Freund, H. J.. Phys.Status Solidi A 173, 93 (1999).Google Scholar
24. Brown, W. A. King, D. A.. J.Phys.Chem.B 104, 2578 (2000).Google Scholar