Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:36:28.012Z Has data issue: false hasContentIssue false

Surface Chemistry of Mesoporous Materials: Effect of Nanopore Confinement

Published online by Cambridge University Press:  11 February 2011

Yifeng Wang
Affiliation:
Sandia National Laboratories, Carlsbad, New Mexico 88220
Charles Bryan
Affiliation:
Sandia National Laboratories, Carlsbad, New Mexico 88220
Huifang Xu
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131–1116
Huizhen Gao
Affiliation:
Sandia National Laboratories, Carlsbad, New Mexico 88220
Get access

Abstract

Acid-base titration and metal sorption experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. It has been demonstrated that surface chemistry and ion sorption within nanopores can be significantly modified by a nano-scale space confinement. As the pore size is reduced to a few nanometers, the difference between surface acidity constants (ΔpK = pK2 – pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined solid-solution interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on that nanopore surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES Cited

1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartull, J. C.; Beck, J. S. Nature, 1992, 359, 710712.Google Scholar
2. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Science, 1997, 276, 923.Google Scholar
3. Chen, X.; Feng, X.; Liu, J.; Fryxell, G. E.; Gong, M. Separation Sci. Technol., 1999, 34, 11211131.Google Scholar
4. Zhao, H.; Nagy, K. L.; Waples, J. S.; Vance, G. F. Environ. Sci. Technol., 2000, 34, 48224827.Google Scholar
5. Xu, Y.-M.; Wang, R.-S.; Wu, F. J. Colloid Interface Sci., 1999, 209, 380385.Google Scholar
6. Shin, Y. S.; Burleigh, M. C.; Dai, S.; Barnes, C. E.; Xue, Z. L. Radiochim. Acta, 1999, 84, 3742.Google Scholar
7. Jung, J.; Kim, J.; Suh, j.; Lee, J.; Ryu, S. Wat. Res., 2001, 35, 937942.Google Scholar
8. Ju, Y. H.; Webb, O. F.; Dai, S.; Lin, J. S.; Barnes, C. E. Ind. Eng. Chem. Res., 2000, 39, 550553.Google Scholar
9. Adair, J. H.; Li, T., Kido, T.; Havey, K.; Moon, J.; Mecholsky, J.; Morrone, A.; Talham, D. R.; Ludwig, M. H.; Wang, L. Mater. Sci. Eng., R23, 1998, 139242.Google Scholar
10. José-Yacamán, M.; Mehl, R. F. Metallurgical and Materials Transactions A, 1998, 29A, 713725.Google Scholar
11. Wang, Y.; Bryan, C., Xu, H.; Phol, P.; Yang, Y.; Brinker, C. J. J. Colloid Interface Sci., 2002, 254, 2330.Google Scholar
12. Stumm, W. Chemistry of the Solid-Water Interface, John Wiley & Son, 1992, 428 pp.Google Scholar
13. Wang, Y.; Bryan, C.; Xu, H.; Gao, H. Geology, 2003 (in press)Google Scholar