Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:27:33.107Z Has data issue: false hasContentIssue false

Surface behavior of heterosubstrates during BEN-MPCVD: a key for diamond heteroepitaxy

Published online by Cambridge University Press:  01 February 2011

Jean-Charles Arnault
Affiliation:
[email protected], CEA-LIST DETECS - SSTM, Laboratoire Capteurs Diamant, Bât 451 - Boîte Courrier 45, Centre d'Etudes de Saclay, Gif sur Yvette, 91191, France, (33) 1 69 08 71 02 (office)
Samuel SAADA
Affiliation:
[email protected], CEA-LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif sur Yvette, 91191, France
Sophie DELCLOS
Affiliation:
[email protected], CEA-LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif sur Yvette, 91191, France
Luciana INTISO
Affiliation:
luciana intiso [[email protected]], Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, Rome, Rome, 00133, Italy
Stéphane PECORARO
Affiliation:
Stephane PECORARO [[email protected]], IPCMS-GSI, UMR 7504, BP 43, 23, rue du Loess, Strasbourg, 67034, France
Philippe BERGONZO
Affiliation:
[email protected], CEA-LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif sur Yvette, 91191, France
Get access

Abstract

The chemical stability of three heterosubstrates (Si, 3C-SiC and iridium) has been studied using the same MPCVD reactor during the successive steps of BEN process. An in situ sequential approach allows a monitoring of the chemical modifications induced by interactions between plasma and surfaces. Contrary to silicon, 3C-SiC and iridium underwent weak surface evolutions during BEN. This leads to favourable conditions for the interface formation in agreement with the better Highly Oriented Diamond films reported in the literature. A short description of the nucleation pathways identified for each heterosubstrate is also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jiang, X., Schiffmann, K., Klages, C. P., Wittorf, D., Jia, C.L., Urban, K., Jaeger, W., J. Appl. Phys. 83, 2511 (1998).Google Scholar
2. Kawarada, H., Wild, C., Herres, N., Locher, R., Koidl, P., J. Appl. Phys. 81, 3490 (1997).Google Scholar
3. Schreck, M., Hörmann, F., Roll, H., Bauer, T. and Stritzker, B., New Diamond and Frontier Carbon Technology 11, 189 (2001).Google Scholar
4. Tanuma, S., Powell, C.J. and Penn, D.R., Surf. Interface Anal. 17, 911 (1991).Google Scholar
5. Tanuma, S., Powell, C.J. and Penn, D.R., Surf. Interface Anal. 36, 1 (2004).Google Scholar
6. Powell, C. J., Jablonski, A., Naumkin, A., Kraut-Vass, A., Conny, J. M., and Rumble, J. R. Jr, J. Electron Spectrosc. Relat. Phenom. 114–116, 1097 (2001).Google Scholar
7. Boland, J.J., Surf. Sci. 261, 17 (1992).Google Scholar
8. Arnault, J.C., Surf. Rev. Lett. 10, 127 (2003).Google Scholar
9. Pecoraro, S., PhD Strasbourg University (2002).Google Scholar
10. Wittorf, D., Jäger, W., Dieker, C., Floter, A. and Guttler, H., Diam. Rel. Mat. 9 1696 (2000).Google Scholar
11. Saada, S., Arnault, J.C., Tranchant, N., Bonaurron, M., Bergonzo, P., phys. stat. sol. (a) 204, 2854 (2007).Google Scholar
12. Pecoraro, S., Arnault, J.C., Werckmann, J., Diam. Relat. Mater. 13, 342 (2004).Google Scholar
13. Jiang, X. and Jia, C.L., Phys. Rev. Lett. 84, 3658 (2000).10.1103/PhysRevLett.84.3658Google Scholar
14. Lee, S.T., Peng, H.Y., Zhou, X.T., Wang, N., Lee, C.S., Bello, I. and Lifshitz, Y., Science 287 104 (2000).10.1126/science.287.5450.104Google Scholar
15. Lifshitz, Y., Meng, X. M., Lee, S.T., Akhveldiani, R., Hoffman, A., Phys. Rev. Lett. 93, 056101 (2004).Google Scholar
16. Arnault, J.C., Saada, S., Delclos, S., Intiso, L., Tranchant, N., Polini, R., Ph. Bergonzo, Diam. Relat. Mater. 16, 690 (2007).10.1016/j.diamond.2006.12.036Google Scholar
17. Arnault, J.C., Saada, S., Delclos, S., Rocha, L., Intiso, L., Polini, R., Hoffman, A., Michealson, S. and Bergonzo, P., Journal of Chemical Vapor Deposition (in press).Google Scholar
18. Arnault, J.C., Delclos, S., Saada, S., Tranchant, N., Bergonzo, P., J. Appl. Phys. 101, 014904 (2007).Google Scholar
19. Arnault, J.C., Intiso, L., Saada, S., Delclos, S., Bergonzo, P. and Polini, R., Appl. Phys. Lett. 90, 044101 (2007).10.1063/1.2433033Google Scholar
20. Suesada, T., Nakamura, N., Nagasawa, H. and Kawarada, H., Jpn J. Appl. Phys. 34, 4898 (1995).Google Scholar
21. Briggs, D. and Seah, M.P., J. Willey & Sons editors, Vol. 1, second edition (1993).Google Scholar
22. Arnault, J.C., Vonau, F., Mermoux, M., Wyczisk, F., Legagneux, P., Diam. Relat. Mater. 13, 401 (2004).Google Scholar
23. Bauer, Th, Schreck, M., Hörmann, F., Bergmaier, A., Dollinger, G., Stritzker, B., Diam. Relat. Mater. 11, 493 (2002).Google Scholar
24. Tsubota, T., Ohta, M., Kusakabe, K., Morooka, S., Watanabe, M., Maeda, H., Diam. Relat. Mater. 9, 1380 (2000).Google Scholar
25. Schreck, M., Hörmann, F., Gsell, S., Bauer, Th., Stritzker, B., Diam. Relat. Mater. 15, 460 (2006).10.1016/j.diamond.2005.10.039Google Scholar
26. Verstraete, M.J. and Charlier, J.C., Appl. Phys. Lett. 86, 191917 (2005).10.1063/1.1922571Google Scholar
27. Bauer, Th., Gsell, S., Härmann, F., Schreck, M., Stritzker, B., Diam. Relat. Mater. 13, 335 (2004).Google Scholar
28. Fu, T.Y., Wu, H.T., Tsong, T.T., Phys. Rev. B 58 (1998) 2340.Google Scholar
29. Härmann, F., Schreck, M., Stritzker, B., Diam. Relat. Mater. 1, 1617 (2001).Google Scholar