Published online by Cambridge University Press: 15 February 2011
Thin surface copper-nickel alloys were prepared by ion implantation at 90 keV. During the implantation of one pure element by the other the sputtered products were collected on catcher foils at different stages from the beginning of the implant through to the steady state configuration of the target surface. The collector foils and targets were analyzed to determine the behavior of the sputtering yields during implantation and for the change in surface composition at the selected fluence. The total sputtering yield for the target and the effective elemental sputtering yields for each component appear to be functions of the changing surface fractions, the self ion sputtering yield of the implanted species, and the elemental sputtering yield of the initial target species. A model relating these parameters is presented.