Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:49:20.694Z Has data issue: false hasContentIssue false

Surface and Volume Diffusion of Water and Oil in Porous Media by Field Cycling Nuclear Relaxation and Pgse NMR

Published online by Cambridge University Press:  21 March 2011

S. Godefroy
Affiliation:
Laboratoire de Physique de la Matière Condensée, UMR 7643 CNRS, École Polytechnique, 91128 Palaiseau, France Institut Français du Pétrole, 92852 Rueil-Malmaison, France
J.-P. Korb
Affiliation:
Laboratoire de Physique de la Matière Condensée, UMR 7643 CNRS, École Polytechnique, 91128 Palaiseau, France
D. Petit
Affiliation:
Laboratoire de Physique de la Matière Condensée, UMR 7643 CNRS, École Polytechnique, 91128 Palaiseau, France
M. Fleury
Affiliation:
Institut Français du Pétrole, 92852 Rueil-Malmaison, France
R. G. Bryant
Affiliation:
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901
Get access

Abstract

The microdynamics of water and oil in macroporous media with SiO2 or CaCO3 surfaces has been probed at various temperatures by magnetic field-cycling measurements of the spin-lattice relaxation rates. These measurements and an original theory of surface diffusion allowed us to obtain surface dynamical parameters, such as a coefficient of surface affinity of the liquid molecules and the surface diffusion coefficient. The water surface diffusion coefficients are compared to the volume self-diffusion coefficients of water in pores, measured by PGSE method, the latter values being more than an order of magnitude higher than the surface ones. Complementary information on the nature of the solid-liquid interface was given by NMR chemical shift experiments at high magnetic field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kleinberg, R. L., Experimental methods in the Physical Sciences: Methods of the Physics of Porous Media, Wong, P. -Zen, ed. (1999).Google Scholar
2. Korringa, J., Seevers, D.O. and Torrey, H.C., Phys. Rev. 127, 1143 (1962).Google Scholar
3. D'Orazio, F., Bhattacharja, S., Halperin, W. P., Eguchi, K., Mizusaki, T., Phys. Rev. 42, 9810 (1990).Google Scholar
4. Korb, J.-P., Xu, Shu, and Jonas, J., J. Chem. Phys. 98, 2411 (1993).Google Scholar
5. Korb, J.-P., Whaley-Hodges, M., and Bryant, R. G., Phys. Rev. E, 56, 1934 (1997).Google Scholar
6. Korb, J.-P., Whaley-Hodges, M., Gobron, Th., and Bryant, R. G., Phys. Rev. E, 60, 3097 (1999).Google Scholar
7. Médout-Marère, V., Ghzaoui, A. El, Charnay, C., Douillard, J. M., Chauveteau, G., and Partyka, S., J. Colloid Interface Sc. 223, 205 (2000).Google Scholar
8. Godefroy, S., Korb, J.-P., Fleury, M. and Bryant, R. G., submitted to Phys. Rev. E.Google Scholar
9. Redfield, A. G., Fite, W., and Bleich, H. E., Rev. Sci. Instrum. 39, 710 (1968).Google Scholar
10. Tanner, J. E., Stejskal, E. O., J. Chem. Phys, 49, 1768 (1968).Google Scholar
11. Mitra, P. P., Sen, P. N., Schwartz, L. M., and Doussal, P. Le, Phys. Rev. Let., 65, 3555 (1992).Google Scholar
12. Abragam, A. 1961, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).Google Scholar