Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:18:02.706Z Has data issue: false hasContentIssue false

Surface and size effects on the Ferroelectric Phase Transition and Surface Polarization of Thin Films: Monte Carlo Simulations

Published online by Cambridge University Press:  10 February 2011

J. Romero
Affiliation:
Department of Physics. University of Puerto Rico, P.O. Box 23343, San Juan, PR 00931-3343
L. F. Fonseca
Affiliation:
Department of Physics. University of Puerto Rico, P.O. Box 23343, San Juan, PR 00931-3343
Get access

Abstract

The macroscopic polarization of ferroelectric thin films was studied by Monte Carlo simulations using a Transverse Ising Model Hamiltonian with four-spins interactions. The dependence of the ferroelectric phase transition temperature, Tc, on the thickness of the film was obtained resulting in a shifting of Tc towards lower temperatures and a change from first-order to second-order phase transition as the thickness of the film is reduced. Comparison between the surface and internal order was carried out by the calculation of layer-averaged polarizations as a function of the sample temperature and the surface interaction parameters. These comparisons show that increasing disorder at the surface can be reverted by increasing the four-spins surface interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jaccard, A., Känzig, W., and Peter, M.. Helv. Phys. Acta 26 521 (1953).Google Scholar
2. Anliker, M., Brugger, H. R., and Känzig, W.. Helv. Phys. Acta 27 99 (1954).Google Scholar
3. Kneikamp, H. and Heywang, W.. Zeit. Angew. Phys. 6, 385 (1954).Google Scholar
4. Shih, W.Y., Shih, W., and Aksay, I.A.. Phys. Rev. B50, 15575 (1994).Google Scholar
5. Swartz, L. and Wood, V.E., Condens. Matter News 1, 4 (1992).Google Scholar
6. Handi, A. and Thomas, A., Ferroelectrics 59, 221 (1984).Google Scholar
7. Batra, L.P. and Silverman, G.D., Solid State Commun. 11, 291 (1972).Google Scholar
8. Scott, J.F., Duiker, H.M., Beale, P.D., Pouligny, B., Dimmler, K., Parris, M., Butler, D., and Eaton, S., Physica B150, 160 (1988).Google Scholar
9. Ishikawa, K., Yoshikawa, K., and Okada, N., Phys. Rev. B37, 5852 (1988).Google Scholar
10. Uchino, K., Sadanaga, E., and Hirose, T., J. Am. Ceram. Soc. 72, 1555 (1989).Google Scholar
11. de Gennes, P.G., Solid State Comm. 1, 132 (1963).Google Scholar
12. Stinchcombe, R.B.. J. Phys. C 6, 2459 (1973).Google Scholar
13. See contributions to Ferroelectrics 136 (1992) and Zhong, W., Vanderbilt, D., and Rabe, K.M., Phys. Rev. B52, 6301 (1995).Google Scholar
14. Wang, C.L., Zhong, W. L., and Zhang, P.L.. J. Phys.: Condens. Matter 3 4743 (1992).Google Scholar
15. Sy, H.K.. J. Phys.: Condens. Matter 5 1213 (1993).Google Scholar
16. Cottam, M.G., Tilley, D.R., and Zeks, B., J. Phys. C17, 1793 (1984).Google Scholar
17. Aguilera-Granja, F. and Moran-Lopez, T.J., Solid State Comm. 74, 155 (1990).Google Scholar
18. Pattard, T. and Siems, R., Ferroelectrics 153, 165 (1994).Google Scholar
19. Bolton, H.C., Lee, B.S., and Millar, J.W.L., J. Phys. C5, 2445 (1972).Google Scholar
20. Wang, C.L., Qin, Z.K., and Lin, D.L., Phys. Rev. B40, 680 (1989).Google Scholar
21. Penson, K.A., Jullion, R., and Pfenty, P., Phys. Rev. B26, 6334 (1982).Google Scholar
22. Wang, Y.G., Zhong, W.L., and Zhang, P.L., Phys. Rev B53, 11439 (1996).Google Scholar