Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-07T20:58:33.346Z Has data issue: false hasContentIssue false

Suppression of the Tetragonal Distortion in Thin Pb(Zr,Ti)O3 Films Grown on MgO(001)

Published online by Cambridge University Press:  10 February 2011

H. C. Kang
Affiliation:
Department of Materials Science and Engineering, and Center for Electronic Materials Research, Kwangju Institute of Science and Technology (K-JIST), Kwangju 506-712, [email protected]
D. Y. Noh
Affiliation:
Department of Materials Science and Engineering, and Center for Electronic Materials Research, Kwangju Institute of Science and Technology (K-JIST), Kwangju 506-712, [email protected]
J. H. Je
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
H. K. Kim
Affiliation:
Department of Physics, Pusan National University, Pusan 609-735, Korea
Get access

Abstract

The paraelectric cubic to ferroelectric tetragonal phase transformation of thin Pb(Zr,Ti)O3/MgO(001) films was studied in synchrotron x-ray scattering experiments. As the thickness of the film decreases, the transition temperature and the amount of the tetragonal distortion were decreased continuously. The thinnest 250 Å thick film was purely composed of the c-type domains in the ferroelectric tetragonal phase. Based on this, we propose a model for the domain structure of the tetragonal PZT/MgO(001) film that is different from the ones suggested in literature. We attribute the suppression of the transition to the substrate effect that prefers the c-type domains near the interface, and reduces the tetragonal distortion to minimize the film-substrate lattice mismatch.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J. F. and Paz de Araujo, C. A., Science, 246, 14001405 (1989)Google Scholar
2. Sreenivas, K., Syer, M., Baar, D. J., and Nishioka, M., Appl. Phys. Lett., 25[9] 709711 (1988)Google Scholar
3. Iijima, K., Takayama, R., Tornita, Y., and Ueda, I., J. Appl. Phys., 60[8] 29142919 (1986)Google Scholar
4. De Keijser, M., Dormans, G. J. M., Cillessen, J. F. M., and Zandbergen, , Appl. Phys. Lett., 58[23] 26362638 (1991)Google Scholar
5. Nashimoto, K., and Nakamura, S., Jpn. J. Appl. Phys., 33[9b] 51475150 (1994)Google Scholar
6. Foster, C. M., Li, Z., Buckett, M., Miller, D., Baldo, P. M., Rehn, L. E., Bai, G. R., Guo, D., You, H., and Merkle, K. L., J. Appl. Phys., 78[4], 2607 (1995)Google Scholar
7. Gao, Y., Bai, G., Merkle, K. L., Chang, H., and Lam, D. J., Thin Solid Films, 235, 86 (1993)Google Scholar
8. Shirane, G., Suzuki, K., and Takeda, A., J. Phys. Soc. Jpn. 6, 265 (1951), and 7, 12 (1952)Google Scholar
9. Kim, S. and Baik, S., J. Vac. Sci. Tech. A13[1] 95100 (1995)Google Scholar
10. Sakashita, Y., Segawa, H., Tominaga, K., and Okada, M., J. Appl. Phys. 73[11], 1 7857 (1993)Google Scholar
11. Lee, K. S., Masters degree thesis, POSTECH (1996)Google Scholar
12. Pompe, W., Gong, X., Suo, Z., and Speck, J. S., Mat. Res. Soc. Symp. Proc. 310, 179 (1993)Google Scholar
13. Dang, E. K. F., and Gooding, R. J., Phys. Rev. Lett., 74, 3848 (1995)Google Scholar
14. Eigenberger, P. and Marra, W. C., Phys. Rev. Lett. 46, 1081 (1981)Google Scholar
15. Chu, S. N. G., Macrander, A. T., Strege, K. E., and Johnston, W. D., Jpn. J. Appl. Phys. 57, 249 (1983)Google Scholar