Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:43:03.313Z Has data issue: false hasContentIssue false

Suppression of Self-Interstitials in Silicon During on Implantation via in-situ Photoexcitation

Published online by Cambridge University Press:  16 February 2011

J. Ravi
Affiliation:
Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695-7916
Yu. Erokhin
Affiliation:
Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695-7916
K. Christensen
Affiliation:
Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695-7916
G. A. Rozgonyi
Affiliation:
Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695-7916
B. K. Patnaik
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Labs, Oak Ridge, TN
Get access

Abstract

The influence of in-situ photoexcitation during low temperature implantation on selfinterstitial agglomeration following annaealing has been investigated using transmission electron microscopy (TEM). A reduction in the level of as-implanted damage determined by RBS and TEM occurs athermally during 150 keV self-ion implantation. The damage reduction following a 300°C anneal suggests that it is mostly divacancy related. Subsequent thermal annealing at 800°C resulted in the formation of 13111 rod like defects or dislocation loops for samples with and without in-situ photoexcitation, respectively. Estimation of the number of self-interstitials bound by these defects in the sample without in-situ photoexcitation corresponds to the implanted dose; whereas for the insitu photoexcitation sample a suppression of ≈2 orders in magnitude is found. The kinetics of the athermal annealing process are discussed within the framework of either a recombination enhanced defect reaction mechanism, or a charge state enhanced defect migration and Coulomb interaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fahey, P. M., Griffin, P. B. and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
2. Kimerling, L.C., Solid State Electronics 21, 1391 (1978).Google Scholar
3. Stein, H.J., Appl. Phys. Lett. 2, 235 (1963).Google Scholar
4. Mordkovich, V.N., Danilin, A.B., Erokhin, Yu., Boldyrev, S.N., MRS Proc. 201, 477 (1991).Google Scholar
5. Erokhin, Yu., Ravi, J., White, C. W. and Rozgonyi, G. A., Nucl. Instr. Methods B, in press (1995).Google Scholar
6. Krynicki, J. and Bourgoin, J.C., Inst. Phys. Conf. Ser. No. 46, 482 (1979).Google Scholar
7. Asom, M.T., Benton, J.L., Sauer, R., Kimerling, L.C., Appl. Phys. Lett. 51, 256 (1987).Google Scholar
8. Wada, K, Nakanishi, H. and Yamada, K., Appl. Phys. Lett. 63, 2525, (1993).Google Scholar
9. Holland, O. W., White, C. W., El-Ghor, M. K., and Budai, J. D., J. Appl. Phys. 68, 2081, (1990)Google Scholar
10. Ravi, J., Erokhin, Yu., Christensen, K., Rozgonyi, G. A., Patnaik, B. K. and White, C. W., to be published in Appl. Phys. Lett. (1995).Google Scholar
11. Sze, S. M., VLSI Technology, McGraw Hill, pg. 240 (1983)Google Scholar
12. Elliman, R. G. and Mitchell, I. V., to be published, Proc of the Mat. Res. Soc., 373, (1995).Google Scholar
13. Ravi, J., Erokhin, Yu., Koveshnikov, S., Rozgonyi, G. A. and White, C. W., Proc. Mat. Res. Soc. 316, 104, (1994)Google Scholar
14. Seibt, M., Imschweiler, J. and Hefner, H.-A., in ECS Proc. Vol 94–10 (SanFransico 1994), pp. 720.Google Scholar
15. Jones, K. S., Prussin, S. and Weber, E. R., Appl. Phys. A45, 1, (1988).Google Scholar
16. Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., Luftman, H. S. and Poate, J. M., to be published, Mat. Res. Soc. Proc. 354,(1995)Google Scholar
17. Eaglesham, D. J., Stolk, P. A., Gossmann, H.-J., and Poate, J. M., Appl. Phys. Lett. 65(18), 31, (1994)Google Scholar
18. Bourgoin, J.C. and Corbett, J.W., J. of Chem. Phys. 59, 4042 (1973).Google Scholar