Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:23:08.737Z Has data issue: false hasContentIssue false

Suppression of Hidden Order and Emergence of Ferromagnetism in URu2-xRexSi2

Published online by Cambridge University Press:  01 February 2011

Nicholas P. Butch
Affiliation:
[email protected], University of California, San Diego, Department of Physics and Institute for Pure and Applied Physical Sciences, 9500 Gilman Drive, La Jolla, CA, 92093, United States
Todd A. Sayles
Affiliation:
[email protected], University of California, San Diego, Department of Physics and Institute for Pure and Applied Physical Sciences, 9500 Gilman Drive, La Jolla, CA, 92093, United States
Benjamin T. Yukich
Affiliation:
[email protected], University of California, San Diego, Department of Physics and Institute for Pure and Applied Physical Sciences, 9500 Gilman Drive, La Jolla, CA, 92093, United States
M. Brian Maple
Affiliation:
[email protected], University of California, San Diego, Department of Physics and Institute for Pure and Applied Physical Sciences, 9500 Gilman Drive, La Jolla, CA, 92093, United States
Get access

Abstract

Measurements on URu2-xRexSi2 single crystals indicate that substitution of Re for Ru in URu2Si2 reduces the transition temperature of the hidden order state and quickly destroys superconductivity. At intermediate Re concentrations, weak ferromagnetism emerges and non Fermi liquid (NFL) behavior is observed in the low-temperature specific heat and electrical resistivity. A scaled Arrott analysis of the magnetization indicates the onset of ferromagnetism at x =0.15, where the hidden order disappears, and that the quantum phase transition is associated with novel critical exponents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schlabitz, W., Baumann, J., Pollit, B., Rauchschwalbe, U., Mayer, H. M., Ahlheim, U., and Bredl, C. D., Z. Phys. B 62, 171 (1986).Google Scholar
2 Maple, M. B., Chen, J. W., Dalichaouch, Y., Kohara, T., Rossel, C., Torikachvili, M. S., McElfresh, M. W., and Thompson, J. D., Phys. Rev. Lett. 56, 185 (1986).Google Scholar
3 M. Palstra, T. T., Menovsky, A. A., Berg, J. van den, Dirkmaat, A. J., Kes, P. H., Nieuwenhuys, G. J., and Mydosh, J. A., Phys. Rev. Lett. 55, 2727 (1985).Google Scholar
4 Broholm, C., Kjems, J. K., Buyers, W. J. L., Matthews, P., Palstra, T. T. M., Menovsky, A. A., and Mydosh, J. A., Phys. Rev. Lett. 58, 1467 (1987).Google Scholar
5 Behnia, K., Bel, R., Kasahara, Y., Nakajima, Y., Jin, H., Aubin, H., Izawa, K., Matsuda, Y., Flouquet, J., Haga, Y., Onuki, Y., and Lejay, P., Phys. Rev. Lett. 94, 156405 (2005).Google Scholar
6 Sharma, P. A., Harrison, N., Jaime, M., Oh, Y. S., Kim, K. H., Batista, C. D., Amitsuka, H., and Mydosh, J. A., Phys. Rev. Lett. 97, 156401 (2006).Google Scholar
7 Wiebe, C. R., Janik, J. A., Macdougall, G. J., Luke, G. M., Garrett, J. D., Zhou, H. D., Jo, Y.-J., Balicas, L., Qiu, Y., D. Copley, J. R., Yamani, Z., and L, W. J.. Buyers, Nat. Phys. 3, 96 (2007).Google Scholar
8 Dalichaouch, Y., Maple, M. B., Torikachvili, M. S., and Giorgi, A. L., Phys. Rev. B 39, 2423 (1989).Google Scholar
9 Dalichaouch, Y., Maple, M. B., Guertin, R. P., Kuric, M. V., Torikachvili, M. S., and Giorgi, A. L., Physica B 163, 113 (1990).Google Scholar
10 Dalichaouch, Y., Maple, M. B., Chen, J. W., Kohara, T., Rossel, C., Torikachvili, M. S., and Giorgi, A. L., Phys. Rev. B 41, 1829 (1990).Google Scholar
11 Torikachvili, M. S., Rebelsky, L., Motoya, K., Shapiro, S. M., Dalichaouch, Y., and Maple, M. B., Phys. Rev. B 45, 2262 (1992).Google Scholar
12 Kohori, Y., Noguchi, Y., Kohara, T., Dalichaouch, Y., Torre, M. A. Lopez de la, and Maple, M. B., Physica B 186-188, 792 (1993).10.1016/0921-4526(93)90706-CGoogle Scholar
13 Bauer, E. D., Zapf, V. S., Ho, P.-C., Butch, N. P., Freeman, E. J., Sirvent, C., and Maple, M. B., Phys. Rev. Lett. 94, 046401 (2005).Google Scholar
14 Butch, N. P., Jeffries, J. R., Yukich, B. T., and Maple, M. B., in Actinides 2006 — Basic Science, Applications and Technology, edited by Blobaum, K.J.M., Chandler, E., Havela, L., Maple, M.B., Neu, M. (Mater. Res. Soc. Symp. Proc. 986, Warrendale, PA, 2007), 0986–OO02.Google Scholar
15 McElfresh, M. W., Thompson, J. D., Willis, J. O., Maple, M. B., Kohara, T., and Torikachvili, M. S., Phys. Rev. B 35, 43 (1987).Google Scholar
16 Arrott, A. and Noakes, J. E., Phys. Rev. Lett. 19, 786 (1967).Google Scholar