Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T01:28:03.100Z Has data issue: false hasContentIssue false

Superstructures from lead sulfide quantum dots

Published online by Cambridge University Press:  27 April 2015

Elena V. Ushakova
Affiliation:
ITMO University, 49 Kronverkskiy pr., Saint-Petersburg, 197101, Russia
Valery V. Golubkov
Affiliation:
Institute of Silicate Chemistry of Russian Academy of Sciences, 2 Adm. Makarova emb., Saint-Petersburg, 199034, Russia
Aleksandr P. Litvin
Affiliation:
ITMO University, 49 Kronverkskiy pr., Saint-Petersburg, 197101, Russia
Peter S. Parfenov
Affiliation:
ITMO University, 49 Kronverkskiy pr., Saint-Petersburg, 197101, Russia
Sergei A. Cherevkov
Affiliation:
ITMO University, 49 Kronverkskiy pr., Saint-Petersburg, 197101, Russia
Anatoly V. Fedorov
Affiliation:
ITMO University, 49 Kronverkskiy pr., Saint-Petersburg, 197101, Russia
Alexander V. Baranov
Affiliation:
ITMO University, 49 Kronverkskiy pr., Saint-Petersburg, 197101, Russia
Get access

Abstract

The superstructures of different morphology (superlattices and supercrystals) are obtained by self-organization of lead sulfide quantum dots (QDs) on a substrate. In contrast to the SAXS patterns of isolated QDs in solutions, the X-ray intensity from ordered superstructures is modulated by the interference from the QDs in SLs or SCs leading to occurrence of the intense peaks at small scattering angles. By indexing the peaks in the SAXS patterns it is concluded that QD SLs are close-packed QD ensembles with the lattice parameter close to the dot diameter and QD SCs have primitive orthorhombic crystal lattice. Absorption and photoluminescence bands of superstructures are also analyzed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nie, Z., Petukhova, A., Kumacheva, E.. Nat. Nanotechnol. 5(1), 1525 (2010).CrossRefGoogle Scholar
Baranov, A.V., Ushakova, E.V., Golubkov, V.V., Litvin, A.P., Parfenov, P.S., Fedorov, A.V., Berwick, K.. Langmuir 31(1), 506513 (2015).CrossRefGoogle Scholar
Rogach, A. L., Eychmüller, A., Hickey, S. G., Kershaw, S. V.. Small 3(4), 536557 (2007).CrossRefGoogle Scholar
Tang, J., Sargent, E. H.. Adv. Mater. 23(1), 1229 (2011).CrossRefGoogle Scholar
Miao, L., Han, J., Zhang, H., Zhao, L., Si, C., Zhang, X., Hou, C., Luo, J., Xu, J., Liu, J.. ACS Nano 8(4), 37433751 (2014).CrossRefGoogle Scholar
Parfenov, P. S., Baranov, A. V., Veniaminov, A. V., Orlova, A. O.. J. Opt. Technol. 78, 120123 (2011).CrossRefGoogle Scholar
Parfenov, P. S., Litvin, A. P., Baranov, A. V., Ushakova, E. V., Fedorov, A. V., Prudnikau, A. V., Artemyev, M. V.. Opt. Spectrosc. 112, 868873 (2012).CrossRefGoogle Scholar
Hines, M. A., Scholes, G. D.. Adv. Mater. 15(21), 18441849 (2003).CrossRefGoogle Scholar
Murray, C. B., Kagan, C. R., Bawendi, M. G.. Annu. Rev. Mater. Sci. 30(1), 545610 (2000).CrossRefGoogle Scholar
Litvin, A. P., Ushakova, E. V., Parfenov, P. S., Fedorov, A. V., Baranov, A. V.. J. Phys. Chem. C. 118(12), 65316535 (2014).CrossRefGoogle Scholar