No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
Super-resolution near-field structure (Super-RENS) was prepared by a heliconwave-plasma sputtering method to improve the disk property that is combined with a magneto-optical (MO) recording disk. Antimony and silver-oxide mask layers were prepared by the method and refractive indices were measured. Recording and retrieving of signals beyond the resolution limit (<370 nm) were achieved for both mask cases. Attempts to optimize the disk structure were also made using a conventional sputtering method. The smallest mark size was around 200 nm and the highest carrier-to-noise ratio (CNR) was 30 dB for 300-nm mark and 22 dB for 250-nm, when using a laser wavelength of 780 nm and a numerical aperture of 0.53. We have found that there is a competing super-resolutional mechanism besides Super-RENS that appears when high readout laser power is applied. This mechanism played rather an important role at least in the mark-size range of 200-370 nm.