Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T03:44:06.565Z Has data issue: false hasContentIssue false

Superluminescence in Green Emission GaInN/GaN Quantum Well Structures under Pulsed Laser Excitation

Published online by Cambridge University Press:  01 February 2011

Jayantha Senawiratne
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Future Chips Constellation and Department of Physics, Applied Physics, and Astronomy, 110 8th street, Troy, NY, NY 12180, United States, 518-276-3899
Stephanie Tomasulo
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Department of Physics, Applied Physics, and Astronomy, Troy, NY, 12180, United States
Theeradetch Detchprohm
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Future Chips Constellation, Troy, NY, 12180, United States
Mingwei Zhu
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Future Chips Constellation, Troy, NY, 12180, United States
Yufeng Li
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Future Chips Constellation, Troy, NY, 12180, United States
Wei Zhao
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Future Chips Constellation, Troy, NY, 12180, United States
Yong Xia
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Future Chips Constellation, Troy, NY, 12180, United States
Zihui Zhang
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Future Chips Constellation, Troy, NY, 12180, United States
Peter Persans
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Department of Physics, Applied Physics, and Astronomy, Troy, NY, 12180, United States
Christian Wetzel
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Future Chips Constellation, Troy, NY, 12180, United States
Get access

Abstract

We report nonlinear optical investigation of green emission GaInN/GaN multi-quantum structures grown along c- and m-axes on sapphire and bulk GaN substrates, respectively. Under intense pulsed photo excitation, we observed strong superluminescence near the lasing condition in c-plane grown quantum well structures with full width at half maximum of 6 nm. The superluminescence couples out of the edge of the sample in a mode pattern consistent with gain in a high mode of the waveguide. The wavelength of the superluminescence is 474 nm. The threshold intensity of superluminescence was found to be 156 kW/cm2. Increasing pump intensity leads to a strong photoluminescence blueshift as large as 380 meV in samples grown along the c-axis on sapphire substrate, while under the same excitation conditions, the blue shift for the m-axis grown structure on bulk GaN substrate is less than 10 meV. The large emission blueshift is hereby attributed to the internal piezoelectric field in the c-axis grown structure. We observe a gain value of 20 cm-1 together with internal absorption losses of 2.3 – 6.0 cm-1 for the superluminescent samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akasaki, I., in Nitride Semiconductors, Mat. Res. Soc. Symp. Proc. Vol. 482 (1998 Materials Research Society). p. 1.Google Scholar
2. Wetzel, C., Salagaj, T., Detchprohm, T., Li, P., Nelson, J. S., Appl. Phys. Lett. 85, 866 (2004).Google Scholar
3. Kojima, K., Funato, M., Kawakami, Y., Nagahama, S., Mukai, T., Braun, H., and Schwarz, U. T., Appl. Phys. Lett. 89, 241127 (2006).10.1063/1.2404971Google Scholar
4. Wetzel, C., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 39, 2325 (2000).Google Scholar
5. Shaklee, K. L., Nahory, R. E., and Leheny, R. F., J. Lumin, 7, 284 (1973).10.1016/0022-2313(73)90072-0Google Scholar
6. Moritz, A., Wirth, R., Geng, C., Scholz, F., and Hangleiter, A., Appl. Phys. Lett. 68, 1217 (1996).Google Scholar
7. Hofstetter, D., Bour, D. P., Thornton, R. L., and Johnson, N. M., Appl. Phys. Lett. 70, 1650 (1997).Google Scholar
8. Swietlik, T., Perlin, P., Suski, T., Leszczynski, M., Czernecki, R., Grzegory, I., and Porowski, S., Phys. stat. sol. (c) 4, 82 (2007).Google Scholar
9. Cho, Y., Schmidt, T. J., Bidnyk, S., Gainer, G. H., Song, J. J., Keller, S., Mishra, U. K., and Denbaars, S. P., Phys. Rev. B 61, 7571 (2000).10.1103/PhysRevB.61.7571Google Scholar
10. Im, J. S., Kollmer, H., Off, J., Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B 57, R9435 (1998).Google Scholar
11. Rowe, M., Vehse, M., Michler, P., Gutowski, J., Heppel, S., and Hangleiter, A., Phys. stat. sol.(c) 0,(6), 1860 (2003).Google Scholar
12. Frankowsky, G., Steuber, F., Harle, V., Scholz, F., and Hangleiter, A., Appl. Phys. Lett. 68, 3746 (1996).Google Scholar