Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:48:16.506Z Has data issue: false hasContentIssue false

Superlattice Nanowires

Published online by Cambridge University Press:  15 February 2011

K. Attenborough
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL., UK
R. Hart
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL., UK
W. Schwarzacher
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL., UK
J-PH. Ansermet
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
A. Blondel
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
B. Doudin
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
J.P. Meier
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
Get access

Abstract

CoNiCu/Cu superlattice nanowires have been grown by electrodeposition in nuclear tracketched nanoporous membranes. Transmission electron microscopy (TEM) images show a good layer structure and allow an estimate of the current efficiency. Current perpendicular to plane (CPP) giant magnetoresistance of up to 22%, at ambient temperature, has been measured but appears to be limited by defects, giving rise to ferromagnetic interlayer coupling, at low nonmagnetic layer thicknesses. Magnetic properties of the superlattice nanowires are influenced by in-plane anisotropy and magnetostatic coupling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. , Pratt Jr, Lee, S-F., Slaughter, J.M., Lolee, R., Schroeder, P.A. and Bass, J., Phy. Rev. Lett. 66, 3060 (1991).Google Scholar
2. Gijs, M.A.M., Lenczowski, S.K.J. and Giesbers, J.B., Phy. Rev. Lett. 70, 3343 (1993).Google Scholar
3. Valet, T. and Fert, A., J. Magn. Magn. Mat. 121, 378 (1993).Google Scholar
4. Alper, M., Aplin, P.S., Attenborough, K., Dingley, D.J., Hart, R., Lane, S.J., Lashmore, D.S. and Schwarzacher, W., J. Magn. Magn. Mat. 126, 8 (1993); M Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes and W. Schwarzacher, Appl. Phys. Lett. 63, 2144 (1993).Google Scholar
5. Possin, G.E., Rev. Sci. Inst. 41, 772 (1990).Google Scholar
6. Penner, R.M. and Martin, C.R., Anal. Chem. 59, 2625 (1987).Google Scholar
7. Whitney, T.M., Jiang, J.S., Searson, P.C. and Chien, C.L., Science 261, 1316 (1993).Google Scholar
8. Blondel, A., Meier, J.P., Doudin, B. and Ansermet, J-Ph., Appl. Phys. Lett. 65, 3019 (1994).Google Scholar
9. Blondel, A., Meier, J.P., Doudin, B., Ansermet, J-Ph., Attenborough, K., Evans, P., Hart, R., Nabiyouni, G., Schwarzacher, W. (to be published in J. Magn. Magn. Mat. 1995).Google Scholar
10. Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E. and Legras, R., Appl. Phys. Lett. 65, 24842486 (1994).Google Scholar
11. Liu, K., Nagodawithana, K., Searson, P.C. and Chien, C.L., Phy. Rev B 51, 7381 (1995).Google Scholar
12. Alper, M., Hart, R., Attenborough, K., Schwarzacher, W. (in preparation).Google Scholar
13. Attenborough, K, Meier, J.P., Hart, R., Schwarzacher, W., Doudin, B. and Ansermet, J-Ph. (in preparation).Google Scholar
14. Voegeli, B., Blondel, A., Doudin, B. and Ansennet, J-Ph. (to be published in J. Magn. Magn. Mat. 1995).Google Scholar