Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:31:00.933Z Has data issue: false hasContentIssue false

Superfluorescent Pulsed Emission from Biexcitons in an Ensemble of CuCl Quantum Dots

Published online by Cambridge University Press:  31 January 2011

Kensuke Miyajima
Affiliation:
[email protected], Graduate School of Engineering Science, Osaka University, Materials Engineering Science, Toyonaka, Japan
Shingo Saito
Affiliation:
[email protected], National Institute of Information and Communications Technology, Kobe, Japan
Masaaki Ashida
Affiliation:
[email protected], Graduate School of Engineering Science, Osaka University, Materials Engineering Science, Toyonaka, Japan
Tadashi Itoh
Affiliation:
[email protected], Graduate School of Engineering Science, Osaka University, Materials Engineering Science, Toyonaka, Japan
Get access

Abstract

Time-resolved photoluminescence spectra of an ensemble of CuCl quantum dots have been measured by an optical Kerr gate method. The excitation photon energy was tuned to resonant energy for two-photon excitation of biexcitons. We observed that the time profiles of biexciton bands were changed from an exponential fast decay to a pulsed shape. This result indicates a transition from amplified spontaneous emission to superfluorescence. These results will introduce a new field of coherent phenomena originating an ensemble of quantum dots.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dicke, R. H., Phys. Rev. 93, 99 (1954).Google Scholar
2 Super-radiance; Multiatomic Coherent Emission, edited by Benedict, M. G., Ermolaev, A. M., Malyshev, V. A., Sokolov, I. V. and Trifonov, E. D. (Taylor & Francis, Inc., 1996).Google Scholar
3 Gibbs, H. M., Vrehen, Q. H. F. and Hikspoors, H. M. J., Phys. Rev. Lett. 39, 547 (1977).Google Scholar
4 Skribanowitz, N., Herman, I. P., MacGillivray, J. C., and Feld, M. S., Phys. Rev. Lett. 30, 309 (1973).Google Scholar
5 Florian, R., Schwan, L. O., and Schmid, D., Phys. Rev. A 29, 2709 (1984).Google Scholar
6 Malcuit, M. S., Maki, J. J., Simkin, D. J., and Boyd, R. W., Phys. Rev. Lett. 59, 1189 (1987).Google Scholar
7 Bonifacio, R., Lugiato, L. A., Phys. Rev. A 11, 1507 (1975).Google Scholar
8 Scheibner, M., Schmidt, T., Worschech, L., Forchel, A., Bacher, G., Passow, T. and Hommel, D., Nat. Phys. 3, 106 (2007).Google Scholar
9 Miyajima, K., Oohata, G., Kagotani, Y., Ashida, M., Edamatsu, K., and Itoh, T., Physica E 26, 33 (2005).Google Scholar
10 Ikezawa, M., and Masumoto, Y., Jpn. J. Appl. Phys. 36, 4191 (1997).Google Scholar
11 Itoh, T., Iwabuchi, Y., and Kataoka, M., phys. stat. sol. (b) 145, 567 (1998).Google Scholar
12 Yano, S., Goto, T., Itoh, T., and Kasuya, A., Phys. Rev. B 55, 1667 (1997).Google Scholar
13 Miyajima, K., Ashida, M., and Itoh, T., phys. stat. sol. (b), 244, 3297 (2007).Google Scholar
14 Miyajima, K., Kagotani, Y., Saito, S., Ashida, M., and Itoh, T., phys. stat. sol. (b) 243, 3795 (2006).Google Scholar
15 Miyajima, K., Kagotani, Y., Saito, S., Ashida, M. and Itoh, T., J. Phys.: Condens. Matter 21, 195802 (2009).Google Scholar